Comparison of speech envelope extraction methods for EEG-based
auditory attention detection in a cocktail party scenario

Wouter Biesmans, Jonas Vanthornhout*, Jan Wouters*, Marc Moonen®, Tom Francart*, Alexander Bertrand'*

Abstract— Recent research has shown that it is possible
to detect which of two simultaneous speakers a person is
attending to, using brain recordings and the temporal envelope
of the separate speech signals. However, a wide range of
possible methods for extracting this speech envelope exists.
This paper assesses the effect of different envelope extraction
methods with varying degrees of auditory modelling on the
performance of auditory attention detection (AAD), and more
specifically on the detection accuracy. It is found that sub-
band envelope extraction with proper power-law compression
yields best performance, and that the use of several more
detailed auditory models does not yield a further improvement
in performance.

I. INTRODUCTION

Humans are able to focus on a particular auditory stimulus
while filtering out all other stimuli, which is known as
the cocktail party effect. Recently, it has been shown that,
by recording brain activity of a person that is presented
an audio mixture of two simultaneous speakers and asked
to attend to only one of them, it is possible to detect
which of the speakers was attended to [1]-[3]. This auditory
attention detection (AAD) paradigm opens up new research
possibilities in the fields of neuroscience, audiology and
signal processing. One possible future real-world application
would be to incorporate AAD in hearing prostheses (HPs),
such as hearing aids or cochlear implants. Adding some EEG
sensors to a HP would then allow to beamform towards the
attended speaker, as opposed to a fixed - but suboptimal -
beamforming in the frontal direction as often done in current
HPs. This way, the HP will always enhance the attended
speech rather than the sound coming from the frontal direc-
tion, which may as well be noise or an unattended speaker.

AAD has been shown to be feasible based on high den-
sity intra-cranial measurements such as electrocorticography
(ECoG) [1] as well as scalp measurements such as magne-
toencephalography (MEG) [2] and electroencephalography
(EEG) [3], where the latter is the only practical modality for
mainstream wearable applications. In particular it has been
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shown that attention in single-trial EEG recordings of about
60 seconds can be detected [3].

In short, AAD is performed by correlating the envelope of
each individual speech signal separately with a reconstructed
envelope. Envelope reconstruction is performed by filtering
the EEG signals with a spatio-temporal filter or decoder. If
the decoder is designed to maximize correlation of its output
with the attended speech envelope, the highest correlation
value is assumed to correspond to the attended speaker.

Different methods can be used to extract the envelope from
the individual speech signals. As such speech envelopes are
desired to be highly correlated with the neural representation
of speech in the auditory cortex, it is expected that envelopes
obtained through increasing detail of auditory modelling will
result in increased performance of the subsequent AAD.

Some simple options for envelope extraction are broad-
band full-wave rectification followed by low-pass filtering
(as often used in electronics), squaring followed by low-
pass filtering (to obtain long-term power averages), or taking
the absolute value of the Hilbert transform (representing the
mathematical envelope). These methods do not explicitly
model the physiology of the auditory periphery.

More physiologically-motivated techniques include ap-
plying power-law amplitude compression as a very simple
model for loudness growth [7], or preprocessing the speech
signal in perceptually uniform frequency sub-bands after
which an envelope for each sub-band is extracted. The latter
technique models the behaviour of the basilar membrane in
the inner ear.

Even more complex auditory models [4]-[6] can be used
that model the full auditory periphery, including the outer to
inner ear, basilar membrane, hair cells and possibly neuronal
behaviour.

The goal of this paper is to investigate whether the choice
of envelope extraction method significantly affects the detec-
tion accuracy of the AAD, and if so, which methods should
be preferred. We show that some basic auditory modelling,
such as calculating sub-band envelopes and applying power-
law compression, results in increased performance, and that
the use of several more detailed auditory models does not
further improve performance.

The paper is organised as follows: Section II reviews the
AAD procedure. Section III describes the different envelope
extraction methods that will be analysed. Section IV de-
scribes the details of the behavioural experiment, as well as
the details of the applied preprocessing. Section V discusses
the results and finally Section VI concludes this paper.



II. AUDITORY ATTENTION DETECTION PROCEDURE

Our goal is to detect which of two simultaneous speakers a
subject is attending to by reconstructing the attended speech
envelope S,:(t) from the C-channel EEG measurement
M (t,c), where t is the discrete time index and ¢ is the
channel index. Similar to [2], [3] reconstruction is achieved
by means of a spatio-temporal decoder D(n, c¢) as follows:

N-1 C

Sare(t) = Z Z D(n,c)M(t+n,c)

n=0 c=1

(1)

In words, the attended speech envelope is reconstructed as a
weighted sum of all C' EEG channels as well as NV —1 time-
delayed versions of all of these EEG channels. The weights
are contained in the decoder matrix D € RN*C and can, for
example, be determined by minimizing a least-squares error
objective function:

D = arg HlDiIl E[‘Sa,tt(t) - Satt(t)‘Q]v (2)

where E[.] denotes expected value.

It is interesting to observe that this objective function
yields the same solution (up to an irrelevant scalar) as when
one would design D such that S(¢) and S(t) are maximally
correlated:

E[Satt(t) Sart (t)] _
V EIS2, (D1 ELS2, (1)

By introducing the vectors

3)

D ~ argmax

m,(t) = [M(t,c) M(t+1,¢)---M(t+ N —1,¢)]7 e RV*!
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i.e. by simulating time-lags as additional, time-shifted EEG
channels, we can rewrite (1) as

Sar(t) = d"m(t) (6)

where d € RVE*1 represents D in vector format, i.e. with
all of its columns stacked.

The optimal decoder can be derived by setting the deriva-
tive of (2) with respect to the elements of D to zero, or by
solving (3) using Lagrange multipliers after reformulating
the denominator as a constraint, resulting in:

d=R'r, (N
where R Em(t) m(t)T] € RNOXNC g the EEG
autocorrelation matrix and r = E[m(t) S, (t)] € RVEx!
is a vector containing the cross-correlations of the attended
speech envelope and the (time-delayed) EEG signals.

An alternative procedure for calculating a suitable de-
coder is based on a Generalized Eigenvalue Decomposition
(GEVD) that maximizes correlation of the reconstructed en-
velope with the attended speech envelope while minimizing
it with the unattended speech envelope [2]. Either method
could be used for this study, but we chose the first because
of its simplicity.

AAD is performed in two stages. In the first stage, the
decoders are trained using the EEG signals and the attended
speech envelope as in (7). As the behavioural experiment
results in multiple measurement trials per subject, decoders
are always trained using a subject-specific leave-one-out
cross validation (see section IV for more details). When
multiple trials are used to construct the decoder, this is imple-
mented by concatenating (not averaging ') their respective
EEG signals and speech signals over time, and using the
concatenated signals to estimate the correlation matrix R
and cross-correlation vector r. This concatenation results in
an improved estimate of the correlation matrices and is less
arbitrary than averaging decoders d obtained by each trial
individually.

In the second stage, for each trial the trained decoder dis
used to reconstruct the attended speech envelope Satt (t) from
the EEG signals (cfr. (1)). Correlation values of the recon-
structed envelope with the envelope of both speech signals
are then calculated and compared. The speech envelope that
has the highest correlation with the reconstructed envelope is
classified as the attended speech. As a performance measure,
the detection accuracy can then be calculated as the fraction
of detections that are performed correctly, across all trials.

Note that in (2) we defined a decoder D that attempts
to reconstruct the attended speech envelope S,¢(t). We
can also define a decoder that reconstructs the unattended
speech envelope S,nq:(t) analogously, but we found that
this unattended decoder, unlike the attended decoder, is
very ear-specific, i.e. it can only successfully reconstruct
unattended speech that is presented at the same ear as in
the trials that were used to train the decoder. Thus for real-
world applications the attended decoder is more interesting
as it is more generally applicable.

III. ENVELOPE EXTRACTION METHODS

The goal of this paper is to assess the effect of different
speech envelope extraction methods, with varying degrees
of auditory modelling, on the performance of AAD. It is to
be expected that methods that model the auditory periphery
in more detail, approach the actual neural representation (as
measured by the EEG) more closely, even though none of
them account for the higher level processing that takes place
in the brain stem and auditory cortex. It is not clear however
how significant and therefore relevant the effect of such a
more accurate representation is for our application, i.e. AAD.
This section will describe the different methods for extracting
a speech envelope S(t) that are assessed in section V.

Starting from the broadband speech signal, four simple
methods are examined with no or little regard for physio-
logical correctness. The first method, referred to as ‘abs’,
calculates the absolute value (= full-wave rectification) of
the speech signal and then applies low-pass filtering. This
method is often used in analogue electronics and is com-
putationally very efficient. The second method, ‘hilbert’,

't is noted that, although each experiment consists of several trials, we
do not average the EEG data over trials, i.e., this is a single-trial method.
Furthermore, not all trials use the same speech signal (see section IV).



calculates the envelope as the amplitude of the (complex)
Hilbert transform of the speech signal. In the case of a
modulated sine wave, this results in the modulating signal.
The third method, ‘square’, squares the speech signal before
integrating the signal over some time frame (equivalent to
low-pass filtering). This results in a signal that can be thought
of as the long-term energy envelope of the speech signal.

Whereas we can think of the first two methods to have
no amplitude compression (linear methods, o = 1), the
third involves a quadratic compression (or expansion rather,
a = 2). However, the actual relation between perceptual
loudness growth and stimulus amplitude a(t) is often mod-
elled through a power-law (i.e. S(t) = a(t)®) compression
with exponent o = 0.6 [7], which reflects compression in
the auditory periphery and thereafter, and is implemented
as a fourth method, ‘powerlaw’. Finally, as an alternative to
power-law compression, we have also investigated the effect
of using a logarithmic compression as in [8].

In the auditory pathway, the speech signal is first split
into frequency sub-bands by the basilar membrane before
any envelope extraction really takes place. To model this in
a simple way, each of the aforementioned four broadband
methods is also applied to sub-band signals, obtained by
filtering the speech signal by a zero-phase gammatone filter
bank [9]. The filter bank contains 17 perceptually uniform
gammatone filters, with center frequencies ranging from 156
Hz to 4911 Hz and each with an equivalent rectangular
bandwidth (ERB) equal to 1.5. In each of these 17 bands,
sub-band envelopes are extracted by each of the four methods
above. These sub-band envelopes are then added together
again, as the measured EEG also contains some combina-
tion of these electrical responses represented by sub-band
envelopes. As an alternative to a simple summation of the
envelopes, we have also investigated the use of an additional
frequency weighting based on the band importance functions
used in the speech intelligibility index (SII) [10], before
summing the envelopes.

For extraction of even more realistic envelopes we refer
to three complete, well-known auditory models. The first,
‘Yang’ [4], decomposes the speech signal into 128 sub-bands,
and models the non-linear response of the hair cells and
accounts for lateral inhibition. The second and third auditory
models, ‘Meddis’ [5] and “Zilany’ [6], model even more
complex auditory mechanics such as efferent feedback and
neuron behaviour. The output of these models that will be
used in this paper are the instantaneous neuron firing rates.
As these models offer free choice as to which neurons’ firing
rates are calculated, 17 neurons corresponding to the same
17 frequencies as the gammatone filter bank are used. As the
output signals of these last two models correspond to neuron
firing rates, we weigh them by the neuronal density [11],
[12] at their respective frequencies before they are summed
to again form one ‘envelope’.

Note that low-pass filtering or integration mentioned as a
last step in some of the methods is ignored, as it is followed
by stricter bandpass filtering later on (see section IV), as a
simple approximation of further cortical processing.

IV. EXPERIMENTAL PROCEDURES
A. Experiment

Three parts of two Dutch short-stories, read by different
male speakers, were selected. The parts were chosen to
last approximately 100 seconds after truncation of possible
silences to 300 ms. In each trial, the subject was presented
one part of each of the two stories simultaneously through
insert phones (Etymotic ER3A), to simulate a so-called
cocktail party scenario. The subject was asked to attend to
only one of both stories, and ignore the other.

The required direction of attention (left or right), as well
as the direction from which each individual speaker was
presented, was frequently alternated between trials.

In condition 1, each of the two earphone signals contained
a single (and different) speaker, presented at 57 dBA. In
condition 2, the stimuli presented to each ear were processed
by head-related transfer functions (HRTFs) first, simulating
a more realistic scenario in which each speaker is simulated
to be spatially located either 90 degrees left or right from
the frontal direction of the subject. For this condition the
stimulation level was only 48dBA.

Each subject attended each part of each story in each ear
twice for each of the conditions. This resulted in (2 stories
x 3 parts x 2 ears x 2 conditions x 2 repetitions =) 48 trials
per subject.

The effects of these different conditions (attended direction
and speaker, with or without HRTFs) are not examined
here, but as each decoder was trained using 47 out of these
48 trials, it is assured that the calculated decoders are not
overfitted towards one speaker, one ear, or the HRTF versus
dry-speech condition.

Seven normal-hearing (verified by audiometry) subjects
between 20 and 26 years old participated in the experiment.
During the experiment their EEG was continuously measured
using a 64-channel BioSemi ActiveTwo system in an elec-
tromagnetically shielded and soundproof room. The 64 EEG
electrodes were placed on the subjects’ head according to
the international 10 - 20 system. It should be noted that
although all seven subjects were native Dutch speakers, two
of them were raised bilingually and showed significantly
worse detection accuracies compared to the other five: they
were the only subjects for which detection accuracies did not
always rise above chance level.

B. Processing

The raw EEG signals were bandpass filtered between 2 and
9 Hz and downsampled from the original 8192 Hz sample-
rate to 40 Hz. Every digital filter used in the processing has
a zero-phase response.

Each of the six single-speaker audio parts was low-pass
filtered at 5 kHz (cfr. transducer cut-off frequency) before
extracting the envelope using one of the methods described in
section III. After envelope extraction, the resulting envelope
was processed identically as the EEG, i.e. bandpass filtered
between 2-9 Hz, and downsampled to a 40 Hz sample-rate.

For the decoder, time-lags from 0O to 250 ms were used
which, at a 40 Hz sample rate, corresponds to N = 11
time-lags. For each trial, a different decoder was trained,



using all 47 other trials from the same subject (cfr. leave-
one-out cross validation). In this way the decoder is trained
independently of the dataset it will be applied to, in order to
avoid overfitting, which is indeed a concern as the decoder
is high-dimensional. For the evaluation stage (i.e. the actual
AAD), only the first 60 seconds of each trial were used
to compute the correlation coefficient with the two speech

envelopes.
V. RESULTS AND DISCUSSION

The detection accuracy of AAD using the different enve-
lope extraction methods detailed in section III is shown in
figure 1. To not overload the figure, the logarithmic compres-
sion and the SII-based frequency weighting are not shown.
However, we briefly note that neither resulted in a significant
improvement of AAD performance compared to the com-
peting methods in figure 1 (power-law and unweighted sub-
band summation, respectively). As inter-subject differences
are large, detection accuracies for each subject (symbols) are
provided along with the average detection accuracy over all
subjects (bars).

To compare the performance of the different methods
pair-wise, we applied one-tailed Wilcoxon signed-rank tests
(o < 0.05, no multiple comparisons correction) for paired
samples to the subject-specific detection accuracies. Both
‘square’ methods performed significantly worse than most
other methods. In addition, both ‘powerlaw’ methods and
“Zilany’ performed significantly better than the ’abs’ and
‘hilbert’ broadband methods. The ‘powerlaw’ sub-band and
“Zilany’ method even performed significantly better than the
‘Yang’ and ‘Meddis’ method. Other pairwise comparisons
did not reach significance.

Applying the same test to compare all grouped broadband
results with their respective sub-band results, shows that
sub-band methods significantly (p < 0.01) outperform their
broadband counterparts (cfr. coloured lines in figure 1).

From these results we can conclude that using knowledge
of the auditory periphery pays off, at least up to a certain
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Fig. 1: Mean (bars) and individual subject (symbols) detection
accuracies for each of the different envelope extraction methods.
Coloured lines connect each subject-specific broadband perfor-
mance with its corresponding sub-band performance. The dotted
black line at 62.5% indicates the detection accuracy which is
only 5% likely to be surpassed by chance, based on a binomial
distribution (p = 0.5, n = 48, a = 0.05).

degree. The ‘powerlaw’ method, inspired by a simple model
of loudness growth, has the best performance of the 4
‘simple’ methods. Additionally sub-band envelope extraction
methods resulted in higher detection accuracies than broad-
band methods.

Finally, it seems that for AAD, calculating sub-band
envelopes and applying power-law compression results in
similar or better performance than the 3 more advanced
auditory models. This could be explained by the fact that
neither simple methods nor the full auditory models account
for higher level processing in the brainstem and auditory
cortex, which might render detailed modelling of the auditory
periphery useless.

VI. CONCLUSION

We have shown that inclusion of some basic auditory
modelling in speech envelope extraction, such as a power-
law compression and/or the use of an auditory inspired
filter bank, significantly improves the performance of AAD.
However, the use of several more detailed models of the full
auditory periphery did not further increase performance.
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