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Abstract— Respiratory rate (RR) is a key vital sign that is
monitored to assess the health of patients. With the increase
of the availability of wearable devices, it is important that
RR is extracted in a robust and noninvasive manner from the
photoplethysmogram (PPG) acquired from pulse oximeters and
similar devices. However, existing methods of noninvasive RR
estimation suffer from a lack of robustness, resulting in the fact
that they are not used in clinical practice.

We propose a Bayesian approach to fusing the outputs
of many RR estimation algorithms to improve the overall
robustness of the resulting estimates. Our method estimates the
accuracy of each algorithm and jointly infers the fused RR esti-
mate in an unsupervised manner, with aim of producing a fused
estimate that is more accurate than any of the algorithms taken
individually. This approach is novel in the literature, where the
latter has so far concentrated on attempting to produce single
algorithms for RR estimation, without resulting in systems
that have penetrated into clinical practice. A publicly-available
dataset, Capnobase, was used to validate the performance of
our proposed model. Our proposed methodology was compared
to the best-performing individual algorithm from the literature,
as well as to the results of using common fusing methodologies
such as averaging, median, and maximum likelihood (ML).

Our proposed methodology resulted in a mean-absolute-error
(MAE) of 1.98 breaths per minute (bpm), outperformed other
fusing strategies (mean fusion: 2.95 bpm; median fusion: 2.33
bpm; ML: 2.30 bpm). It also outperformed the best single
algorithm (2.39 bpm) and the benchmark algorithm proposed
for use with Capnobase (2.22 bpm).

We conclude that the proposed fusion methodology can be
used to combine RR estimates from multiple sources derived
from the PPG, to infer a reliable and robust estimation of the
respiratory rate in an unsupervised manner.

I. INTRODUCTION
Respiration rate (RR) is an important physiological vari-

able measured in a wide range of clinical scenarios as it
provides valuable diagnostic and prognostic information [1].
Measurement of RR is commonly performed by manually
counting the chest movements of the individual over a period
of approximately 30 - 60 seconds [2]. This practice is time-
consuming and prone to large variation in RR estimates.
Typically, the number of breaths occurring within 15 seconds
is counted, and then multiplied by four to give an estimate in
bpm, which is therefore quantised into units of 4 bpm. This
approach is particularly problematic with younger children,
who have fast breathing rates [3] and where the potential for
error is substantial. A potential solution is to estimate RR
from a physiological signal that is both routinely acquired
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by mobile sensors (such as the electrocardiogram or the
PPG from pulse oximeters), and which is modulated by
respiration. Although poorly understood, several different
physiological mechanisms cause modulation of the PPG
[4], [5], which result in amplitude modulation (AM), base-
line wander (BW), and modulation of beat-to-beat intervals
(frequency modulation, FM). Recently proposed methods
for extracting RR from segments of PPG signals rely on
estimating RR from each modulation (the derived respiratory
signals), and fusing the three estimates into a final RR value
[4] [7]. However, the common “fusion” approaches of the
RR estimates derived from the different modulations are typ-
ically very straightforward (resulting in poor overall fusion
results), and which tend to reduce substantially the number
of windows for which an estimate of RR is computed.

A. Related Works

The most commonly-used methods for fusing different
respiratory estimates extracted from physiological signals are
mean or median voting. However, they generally perform
well only if there are a large number of respiratory signals
available. Recently, the “Smart Fusion” approach was pro-
posed by Karlen et al. [4], wherein they fused three respira-
tory modulation signals of RR estimates. These signals were
estimated from the frequency content of respiratory-induced
variation using an FFT-based approach, and which were
then combined by taking a mean voting approach. Windows
for which the three resulting RR estimates (one from each
source: AM, BW, FM) had an associated standard deviation
that exceeded 4 bpm were discarded, resulting a 41.5% data
loss. An effective probabilistic approach to aggregate expert
estimates was first proposed by Dawid and Skene [8] using
the EM algorithm when the ground truth was not readily
available. They applied their fusion method to classify the
unknown state of health (i.e., “fit to undergo a general
anaesthetic”) for 45 patients, given the decisions made by
five independent anaesthetists. Raykar et al. [9] extended this
approach to measure the diameter of a suspicious lesion on a
medical image using a regression model, and optimised the
parameters using an ML-based approach. Their assumption
was that the discrepancies of the estimates of lesion diameter
from different experts were noisy versions (with Gaussian
distribution) of the true diameter. Here, we propose a proba-
bilistic fusion method to improve RR estimates employing a
Bayesian treatment of the EM algorithm. It measures the bias
(i.e., inverse accuracy) and precision (i.e., inverse variance
of noise) of the outputs of each RR estimation algorithm,
which is used to infer an estimation of the fused RR values.
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Fig. 1. Graphical representation of the BCLA model: y j
i corresponds to a

RR estimate provided by the jth algorithm for the ith window, with latent
value zi (the unknown true RR), the φ j (bias of y), and the λ j (precision of
y). Furthermore, zi is drawn from a Gaussian distribution with mean a and
variance 1/b, where a can be a function of feature vector xi. Let φ j have a
Gaussian distribution with mean µφ and variance 1/αφ . Let b, λ j , and αφ

be drawn from Gamma distributions (denoted as Γ) with hyperparameters
(kb, ϑb), (kλ , ϑλ ), and (kα , ϑα ), respectively.

II. THEORY
A. Bayesian Continuous-Valued Label Aggregator (BCLA)

Suppose that there are N windows of respiratory data
estimated by R algorithms. Let D =

[
xᵀi ,y

j
i , · · · ,y

j
i

]
, where

i = 1 . . .N, j = 1 . . .R. Here, xi is a column vector for the ith

window, and which contains d features as its elements. Let y j
i

correspond to the RR estimate provided by the jth algorithm
for the ith window, and zi represent the unknown true RR
value for the ith window. A graphical representation of the
BCLA is shown in Fig. 1, where it may be seen that the
xi are features that are used to influence the latent variable
estimating the ground truth - typically, these are taken to
be signal quality indices (SQIs) that indicate periods of
noise in the time-series data presented to each RR-estimation
algorithm [10].

B. EM with Maximum a Posteriori (MAP)

With the assumption that respiratory value are estimated
independently for each window (as is the case), the likelihood
of the parameters θ = {w,λ ,φ ,αφ ,b,zi} for a given dataset
D can be formulated as:

P[D | θ ] =
N

∏
i=1

P[y1
i , · · · ,yR

i | xi,θ ]. (1)

It is assumed that y1
i , · · · ,yR

i are conditionally independent
given the feature xi (i.e., each algorithm is independent). The
likelihood of parameters θ for a given input set D can be
written using Bayes’ theorem as follows (defined in Fig. 1):

P[θ | D] ∝ P[D | θ ] ·P[θ ]
= Γ(αφ | kα ,ϑα)Γ(b | kb,ϑb)×

[
R

∏
j=1

N (φ j | µφ ,1/αφ )Γ(λ
j | kλ ,ϑλ )]×

[
N

∏
i=1

N (zi | a,1/b)
R

∏
j=1

N (y j
i | zi +φ

j,1/λ
j)]. (2)

where N denotes a Normal distribution, N (c | µ,1/α),
and where Γ denotes a Gamma distribution Γ(t | k,ϑ). Pa-
rameter values θ may be estimated using a MAP approach,
which maximises the log-likelihood of the parameters, i.e.,
argmax

θ

{logP[θ | D]}. This can be performed by equating the
gradient of the log-likelihood of each element in θ to zero
to give:

1
λ j =

1
N +2(kλ −1)

[
N

∑
i=1

(y j
i −φ

j− zi)
2 +

2
ϑλ

]
(3)

w =

(
N

∑
i=1

xix
ᵀ

i

)−1 N

∑
i=1

xizi (4)

φ
j =

1

N +
αφ

λ j

[
N

∑
i=1

(y j
i − zi)+µφ (

αφ

λ j )

]
(5)

1
αφ

=
1

R+2(kα −1)

[
R

∑
j=1

(φ j−µφ )
2
+

2
ϑα

]
(6)

zi =
∑

R
j=1

[
(y j

i −φ j)λ j
]
+(xᵀi w)b

∑
R
j=1 λ j +b

(7)

1
b
=

1
N +2(kb−1)

[
N

∑
i=1

(zi−xᵀi w)2 +
2

ϑb

]
(8)

This can be solved using the EM algorithm in a two-step
iterative process: (i) the E-step estimates the expected true
RR estimates for all windows, ẑ, as a weighted sum of the
provided estimates, and can be calculated using equation (7);
and then (ii) the M-step is based on the current estimation
of ẑ given D. The model parameters can be updated using
the above equations in a sequential order until convergence.

III. METHOD

A. Data Description

The Capnobase dataset [11] was collected during elective
surgery and routine anaesthesia. It consists of PPG recordings
and capnometry data (Fs = 300 Hz), from 59 children
(median age: 9, range: 1-17 years) and 35 adults (median
age: 52, range: 26-76 years). We used the set as described
in [4], which has 42 recordings of 8 minutes duration (336
minutes in total) containing reliable recordings of breathing.
The capnometric waveform was used as the reference for
RR estimates [4]. Only open-source data were used, and so
ethical approval is irrelevant for our numerical study.

B. Respiratory Estimates and Fusion

RR was computed for 32-second windows, with successive
windows having 29 seconds overlap. To extract the three
respiratory-induced modulations (AM, BW, FM), PPG beat
detection was performed using a segmentation algorithm
[12]. The latter produces a series of maximum and minimum
intensities for each pulse. As shown in Figure 2, the series
of maximum intensities of the PPG pulses was used for
extracting the BW timeseries. The (max-min) amplitude was
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Fig. 2. Example of a 32-sec PPG window used RR estimation. AM (green), BW (blue), and FM (red) respiratory modulations are extracted; for the FFT-
based method, the power spectrum is calculated for each modulation using FFT, and the maximum power is selected within the physiologically-plausible
RR range (grey area); for the AR-based method, the poles for each modulation are determined using an AR model, and the dominant pole within the
plausible range of RR (grey area) is selected. Our proposed BCLA is then used to combine estimates, and provide a final “fused” value for that window.

used to derive the AM timeseries. The intervals between
successive beats was used to extract the FM timeseries.

textbfRR was estimated using two different spectral ap-
proaches that have been used in the recent literature: Fourier
analysis and autoregressive (AR) modelling. Spectral anal-
ysis requires evenly-sampled data, and so each timeseries
(corresponding to BW, AM and FM) was first re-sampled at
4 Hz using linear interpolation. For the first method [4], the
frequency spectra of the resulting respiratory signals were
calculated. The frequency at which the maximum intensity
of each spectrum is obtained within the frequency range of
interest (corresponding to 3 to 60 bpm), was taken as the
respiratory frequency (Figure 2). For the latter [6], [7], an
AR model (of order 7) was fitted to each timeseries. The
respiratory frequency was identified as that corresponding
to the pole with the greatest magnitude within the plausible
range of frequencies. We note that for each window, for each
algorithm, three RR estimates were determined.

C. Evaluation and Comparison

The mean of the mean absolute error (MAE) and the
standard error of the inferred RR estimates (from the PPG)
across all subjects using the proposed fusion method, BCLA,
were compared to the reference RR values (from capnogra-
phy). BCLA was applied to the RR estimates extracted using
the FFT-based, AR-based, and all (FFT+AR) algorithms.
Additionally, the performance of the BCLA was compared
to that of “Smart Fusion” [4], and with the best-performing
(lowest-MAE) single algorithm (denoted “Best”). These were
compared to other commonly use voting strategies, such
as mean, median, and ML proposed in [9], using (i) RR
estimates for all windows; (ii) only RR estimates for those
windows following the criteria considered by Smart Fusion
(denoted *); i.e., those windows where RR estimates with
one standard deviation exceeding 4 bpm were discarded.

IV. RESULTS

The resulting values of the parameters and hyperparam-
eters of the BCLA model for the Capnobase dataset are

TABLE I
BCLA PARAMETER VALUES FOR MODELLING CAPNOBASE

Symbol Definition Value
kb shape of Gamma distribution for b 3
ϑb scale of Gamma distribution for b 0.006
µφ mean of the bias distribution variable †
kα shape of Gamma distribution for αφ 5
ϑα scale of Gamma distribution for αφ 0.1
kλ shape of Gamma distribution for λ 3 ‡
ϑλ scale of Gamma distribution for λ 0.02 ‡

N.B.: b is the precision for the estimate of the ground truth. αφ is
the precision for the estimate of the bias from ground truth. λ refers
to signal-specific precisions. The values with ‡ are determined with
the assumption that the RR estimates provided by the best modulation
signal is ±2 bpm away from the reference. The values with † are
estimated from the median RR estimates provided by the algorithms.

described in Table I. The mean of the biases varied for
individual subjects, and it was calculated using the median
of the RR estimates across all windows.

The mean and standard error of the MAE for each fusion
strategy are shown in Table II. The associated MAE results
with * indicate that some windows were discarded when
fusing estimates if they had a standard deviation greater than
4 bpm. An example of the percentage of windows used for
each subject is shown in the lower plot of Fig. 3.

RR estimates fused via BCLA had lower MAE than
those of the Smart Fusion method (i.e., Mean* in Table II)
when using either the FFT-based, or the AR-based, or both
combined (FFT+AR) extraction methods. In the case of using
the FFT-based algorithm in [4], the BCLA achieved a MAE
of 1.97±0.40 bpm and used all available windows. This was
smaller than the MAE of the Smart Fusion (2.02±0.39 bpm),
even when it disregarded data (and therefore did not produce
estimates) from 41.5% of windows.

The difference in MAE for each subject (i.e., the MAE
of the Smart Fusion subtracted the MAE of the BCLA) is
shown in the upper plot of Fig. 3. A positive difference
in MAE indicates an improvement of the BCLA in bpm
whereas a negative difference in MAE implies the opposite.
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TABLE II
COMPARISON OF MAE (AND STANDARD ERROR) ACROSS 42 SUBJECTS

Fusion AR FFT FFT+AR

Mean 3.58±0.41 2.92±0.40 2.95±0.39
Best 3.31±0.41 2.39±0.43 2.39±0.43
Median 3.25±0.41 2.22±0.37 2.33±0.38
ML 3.12±0.42 2.03±0.38 2.30±0.42
BCLA 3.03±0.41 1.97±0.40 1.98±0.37
Mean* 3.26±0.41 2.02±0.39 2.22±0.41
Best* 3.12±0.41 1.93±0.39 1.56±0.35
Median* 3.17±0.41 1.97±0.39 1.98±0.43
ML* 3.06±0.42 1.84±0.39 2.11±0.43
BCLA* 2.99±0.41 1.86±0.39 1.81±0.39

N.B.: * indicates use of windows where the standard deviation of
estimates was not above 4 bpm.

Fig. 3. Differences in MAE between Smart Fusion and the BCLA for
all subjects are shown in the upper plot. A positive difference indicates
an improvement of MAE using BCLA when fusing outputs from FFT+AR
algorithms. The numeric labels corresponds to the subject IDs. The lower
plot shows the percentage of windows considered when using the Smart
Fusion for individual subjects. Note that BCLA uses all available windows.

MAE improved with BCLA (i.e., positive difference) for
66.7% of subjects; when windows were excluded if the
standard deviation of RR estimates was greater than four,
MAE improved for 81.0% of subjects.

Although the results of ML* and Best* outperformed those
of BCLA*, the comparison was only based on 58.5% of
the windows. When considering all windows, and thereby
reporting RR estimates for all data, the BCLA was superior
over other fusion strategies, demonstrating its ability to
perform reliable fusion in the face of substantial noise. MAE
values for AR-based algorithms were much worse than those
of FFT-based algorithms in our study, and yet the BCLA was
able to distinguish the quality of each algorithm’s output
based on their noise variance as well as their accuracy. This
was true even in cases where there was a mixture of “good”
and “bad” algorithms (i.e., FFT+AR). Modulation signals
with high accuracy and low noise variance were favour by
the BCLA, which demonstrates the ability of the BCLA to
produce high-accuracy fused estimates (in an unsupervised
manner) from a set of candidates, some of which may be
individually poor estimates.

V. CONCLUSIONS
The current model assumes the same distribution of noise

variance for each an algorithm’s estimates for each patient.

Future work will include use of SQIs for each sensor time-
series; this will allow the model to switch behaviour between
subjects, offering the possibility of further reducing the error
in RR estimation. Furthermore, other features, such as age,
can be incorporated in the model to adjust the mean of the
estimated latent ground truth to fit a subject population better,
noting that different age groups exhibit different respiratory
rates.

We have demonstrated that the proposed fusion method-
ology can be used to combine RR estimates from multiple
sources derived from the PPG, to infer a reliable and robust
estimation of the respiratory rate in an unsupervised manner.
No training data need to be held out for optimising the
parameters of the BCLA, and no prior knowledge of the
performance of each algorithm was given. The average time
for fusing 900 estimates from six algorithms using BCLA
was about 0.64 seconds, which allows our proposed Bayesian
method to be used for real-time application to producing RR
estimates that are more robust than any of the algorithms
considered independently.
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