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Abstract—Cell tracking enables data extraction from time-
lapse "cell movies" and promotes modeling biological processes 
at the single-cell level. We introduce a new fully automated 
computational strategy to track accurately cells across frames in 
time-lapse movies. Our method is based on a dynamic 
neighborhoods formation and matching approach, inspired by 
motion estimation algorithms for video compression. Moreover, 
it exploits "divide and conquer" opportunities to solve 
effectively the challenging cells tracking problem in 
overcrowded bacterial colonies. Using cell movies generated by 
different labs we demonstrate that the accuracy of the proposed 
method remains very high (exceeds 97%) even when analyzing 
large overcrowded microbial colonies.  

I. INTRODUCTION 

Data analysis of time lapse microscopy "cell movies" is an 
important tool allowing us to "zoom in" and observe dynamic 
biological processes at the single-cell level [1]. Recent studies 
have noted its importance for investigating how stochasticity 
(biological "noise") affects gene regulation, aspects of cell 
growth, cell proliferation etc. [2]. Mathematical models are 
important to form and test hypotheses for such phenomena 
[3]. Time-lapse movies can provide an abundance of time 
course data, extremely valuable for mathematical models' 
calibration and validation. However, the accurate, automated 
segmentation and tracking of individual cells, as they grow, 
move and divide in expanding bacterial colonies, remain 
major challenges [4]. Manual cell counting and tracking 
across frames is extremely laborious and error prone. 
Therefore, automation strategies are essential before we can 
add time-lapse image analysis in the arsenal of high 
throughput methods for systems microbiology. 

Finding correspondences, or matches, between objects 
across successive image frames is a fundamental problem in 
computer vision [5] and video compression [6]. The problem 
becomes more complicated if an unknown transformation 
deforms the objects in different frames. This is often the case 
in time-lapse cell movies, since cells grow, proliferate, and 
push each other! Establishing cells correspondence across 
frames can become very complicated, especially when the 
frame rate is low and cells move a lot across frames. In 
addition, limitations of image capturing and pre-processing 
(segmentation) introduce deformations in extracted cell 
curvatures, making cell matching even harder. 
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Several software packages support the segmentation and 
tracking of cells in time lapse movies. Among them we 
mention TLM-Tracker [7], CellTracer [8], and Schnitzcells 
[9]. TLM-Tracker [7] employs two overlap based algorithms 
for tracking, namely overlapping boxes and overlapping 
regions, and allows users to choose among them based on the 
tracking problem complexity. CellTracer [8] uses 
neighboring cells information to compute likelihood scores 
for cells' identity between successive time steps and then 
applies an integer programming based method to generate cell 
correspondences and construct the colony's lineage tree. 
Schnitzcells [9] segments cells and tracks them in a frame-to-
frame manner using an energy function optimization method 
[10]. However, all the aforementioned tools suffer from 
several limitations, the most important being, (i) lack of 
tracking automation and, (ii) lack of accuracy in overcrowded 
regions. They often require intense human involvement to be 
able to track cells in frames with considerable cell movement 
and/or cells overpopulation. 

We introduce a new, fully automated approach 
overcoming the above limitations. In conjunction with our 
accurate cell segmentation algorithms that proceed cell 
tracking (to be presented elsewhere), it enables high 
throughput analysis and efficient estimation of single-cell 
properties in growing microbial communities, thus forming 
the basis for the development of a single-cell micro-
environment analytics platform. Besides their robustness, 
even in overcrowded micro-colonies, the proposed 
methodology offers several new capabilities: tracking of 
multiple micro-colonies in the field of view, lineage trees 
construction for each micro-colony, visualization on the tree 
of single-cell properties as they evolve in time (e.g. cell 
length, area, distance from the colony's centroid, GFP 
intensity, etc.), visualization of cell tracks across frames etc. 
To the best of our knowledge, our approach, which is inspired 
by motion estimation for video compression [6] [11], is the 
only one based on a dynamic ad hoc cell neighborhood 
formation and optimal matching following a divide and 
conquer strategy. 
The rest of the paper is organized as follows. In Section II we 
present an overview of the developed tracking strategy. In 
Section III we show that it is accurate and outperforms 
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Figure 1. Schematic overview of the proposed tracking methodology. (1) 
Cells correspondence in frame t (ft) and frame t+1 (ft+1), (2) Dilation of cell 
c and cell neighborhood definition, (3) Definition of the search region in ft, 
(4) Optimal matching, (5) Matching validity check. 

state-of-the art methods when colonies become overcrowded. 
Finally, in Section IV we summarize our findings and point 
to work in progress. 

II. CELL TRACKING APPROACH 

A. The general idea 

After cells segmentation is completed and in order to 
construct the lineage tree of a colony, we need to solve the cell 
tracking problem. Suppose that a colony in frame t (to be 
called ft from now on) has m cells and in the next frame t+1 
(ft+1) it has n cells. Cell correspondence relations (matches) can 
be: 1-to-1 (father-to-daughter; proliferation), 1-to-2 (father-to-
daughters; division), and even 1-to-N, N>2 (father to N 
cells/objects; e.g. over-segmentation error).  The general idea 
of our approach is first for every unmatched cell c in the 
current frame ft+1 to define an appropriate neighborhood of 
cells. Then using the covariance structure of this neighborhood 
to define a search region in the previous frame ft, and search 
inside it for the best matching of the cell neighborhood's 
image, in order to establish an optimal correspondence of cells 
in the neighborhood. Finally the algorithm validates the cells 
matching result before repeating the same procedure until all 
cells are matched (have been assigned a father). Our method is 
inspired by motion estimation [11], a basic operation for video 
compression [6]. 

B. Processing Stages 

The objective of the algorithm is to locate candidate fathers 
(cells in ft) for each daughter cell c of the current frame ft+1. In 
the sequel we focus w.l.o.g. on a cell c in ft+1 to describe how 
the algorithm works. For example in Fig. 1 Panel 1 right cell 
c=4.1 (in ft+1) should be matched to its father cell 4 (in ft). 
Stage 1. Cell neighborhood Definition: For each cell c in the 
current frame ft+1 we find unmatched cells with centroids 
inside a hypothetical disk centered at c with radius R equal to 
the average length of cells in ft+1. For example let's assume that 

for cell c=4.1 this disk includes all colored cells (in ft+1), see 
Fig. 1 Panel 1 right. The algorithm then dilates cell c by using 
a disk structuring element [12] of radius r equal to the average 
cell width (see Fig. 1 Panel 2 left). Then it identifies the cells 
"touched" by the dilated cell c. These cells are the first order 
neighbors of c (Fig. 1 Panel 2 right). Then, it may apply the 
same dilation procedure again to the first order neighbors in 
order to find the second order neighbors of c, and so on. This 
recursion is repeated L times, where L is an upper bound for 
the layers of neighbors considered, resulting in the definition 
of the neighborhood of c (called Nt+1). The value of L depends 
on the location of c and the size of the colony, and is larger for 
cells close to the colony's centroid.  

Stage 2. Search area definition (Fig. 1 Panel 3): In order 
to match efficiently the defined neighborhood Nt+1 with 
candidate neighborhoods within the previous frame ft, we 
should first define an appropriate search area St in ft. Initially 
we estimate the covariance of the pixels matrix of cells in Nt+1 
and use it to compute the Mahalanobis distance [13] of each 
pixel of ft to the image of the centroid of Nt+1 into ft (see the 
cross in Fig. 1, Panel 3 left).  Then we find the k nearest 
neighbor (kNN) pixels [13] to the centroid image (green area 
Fig. 1, Panel 3 left). Finally we select uniformly a subset of l 
points, among the kNNs, to form the set of points, St, for the 
candidate centroids of the best neighborhood in ft i.e. the one 
matching optimally Nt+1. We remark that parameters l and k 
take values proportional to the size of the size of Nt+1 in pixels. 
As it is apparent the algorithm exploits the orientation of Nt+1 
(covariance structure) to estimate the direction of its motion 
between consecutive frames and thus constrain the number of 
candidate matchings to be evaluated. 

Stage 3. Compute/Evaluate the candidate matchings: 
We now place the image of the centroid of Nt+1 to each point 
in St and create l score matrices, Sl, having |Nt+1| rows and m 
columns each. The (i,j)-th  element of  a score matrix is the 
overlap score of the ith cell in Nt+1 and the jth cell of ft defined 
as: 

              Sij= area c(i,t+1)∩c(j,t) area c(i,t+1)∪c(j,t) . (1) 
Then for each Sl we also compute its overall overlap score  
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i.e. the sum of maximum overlap scores of each cell in Nt+1 (ith 
row) with a cell in ft (jth column). This maximum establishes a 
candidate correspondence between each cell i in Nt+1 (daughter 
cell) to one and only one cell j in ft (father cell). When 
considering all rows of the score matrix this leads to a 
candidate matching of  all cells of neighborhood  Nt+1 to father 
cells in the previous frame ft.              

Stage 4. Determine the optimal matching (Fig.1 Panels 
4): We choose the candidate neighborhood in ft with the 
highest overall score Ol, to be called the Nt. Then we create a 
new matrix S which has |Nt+1| rows and |Nt|  columns and its 
elements are defined as: 

                    Sij=
Sij if cell i corresponds to cell j   
0 otherwise                                

.           (3) 

The nominal case for this matrix is to contain columns with 
one or two non-zero elements, because each father cell should 
correspond to at most two daughter cells. 



  

 
Figure 2. Lineage Tree Visualization of cell area evolving with time as cells 
grow and divide. Triangular (circular) nodes depict time points (resolution 5 
min) in the life of an external i.e. on micro-colony’s boundary (internal) cell. 

Stage 5. Validate the optimal matching (Fig.1 Panels 5-
6): Considering the aforementioned expected nominal 
behavior, we assess the validity of the optimal matching by 
estimating the total overlap score for each father cell j in Nt: 
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If for every cell j=1,2,... |Nt|, the score Oj is greater than a 
threshold T and less than 1 (maximum overlap) the optimal 
matching is accepted; all cells in Nt+1 and Nt are considered 
matched and removed from the cells-to-match and fathers’ 
lists respectively. Otherwise, the optimal matching is rejected 
and all cells in Nt+1 are marked as "problematic". If the same 
cell has been marked repeatedly (e.g. 3 times) it is removed 
from the cells-to-match list and placed in an exclusion list. 
This scheme allows us to continue the processing while also 
separating difficult cells-to-match cases, usually cells that 
were divided or moved radically between consecutive frames. 
The algorithm will revisit these "problematic" cells and try to 
find their fathers again at the end of the process, when the 
problem has become simpler, i.e. when the large majority of 
cells have been matched. 

We repeat this process until each cell in ft+1 is either 
matched with a cell in ft or removed from the cells-to-match 
list. At this point we try again to match the excluded 
"problematic" cells by following the same five-stage process. 
If this fails to match all remaining cells, we lower the 
threshold T, reset the excluded cells list and repeat the same 
process. Finally, when all cells in two consecutive frames are 
matched, or T is down to 0.5, the algorithm proceeds with the 
next pair of frames until all pairs have been processed. Any 
unmatched cells at this point are most probably over-
segmentation artifacts. 

C. Construction of the Lineage and Division Trees  
As the algorithm tracks cells across frames it 

simultaneously creates a lineage tree, keeping record of the 
attributes of each individual cell (see Fig. 2). When a tracking 
step is completed, the algorithm searches the tree to find the 
father of each matched cell and inserts a new node under it. 
At the end, the algorithm returns as many lineage trees as the 
number of cells in the initial frame. Given these lineage trees, 
our method generates recursively another useful tree 
structure, the so called divisions’ tree. Division trees record 

only cell division events and each node depicts an individual 
cell's "life attribute" (e.g. the average cell length). 
 

III. RESULTS AND DISCUSSION 

A. Evaluation 

Two cell movies created by different labs were used in the 
comparative evaluation. The first movie starts with four S. 
Typhimurium cells which grow to become four discrete 
micro-colonies with ~200 cells each [3]. The second movie 
shows an E. Coli micro-colony of ~50 cells [9].  The tracking 
ground truth for both movies was determined by experts. In 
order to evaluate the proposed method, we compared its 
performance to that of Schnitzcells [9]. since this is the most 
recent software package and gives satisfactory tracking 
results for both movies. However, Schnitzcells failed to 
segment the first movie, so to evaluate the tracking methods 
fairly we provided as input to Schnitzcells the manually 
refined results of our segmentation algorithms (not discussed 
in this paper).  

Evaluation was performed following two methods.  First, 
we evaluated the two algorithms using a frame-based 
approach, similar to the one proposed in [14], based on the 
estimated Tracker Detection Rate (TDR) defined as: 

TDR=TP/GT,         (5) 
where True Positives (TP) is the number of frames with no 
tracking errors (i.e. cell-to-cell correspondences that were 
undetected or non-existing) and ground truth (GT) is the total 
number of frames in the movie. As we can see in Figure 3(a), 
the proposed method exhibits very high TDR for both 
datasets, over 98.7%. Moreover, it outperforms Schnitzcells 
even when using their own movie. As we observe in Fig. 3(b), 
Schnitzcells made errors mainly in the last frames where the 
micro-colonies become overcrowded and tracking becomes 
very difficult. So, to investigate the overpopulation effects we 
focused in the last few frames (79-86) and evaluated the two 
algorithms using also a tracks based approach, a more strict 
variation of the one presented  in [14][15]. Here we consider 
as ground truth (GT) tracks with trajectory and lifespan 
extending to, or beginning after, the 79th frame. Specifically, 
we estimated the Error Rate (ER) that is defined as: 
                              ER=(FAT+TDF)/GT , (6) 
where False Alarm Track (FAT) is the number of non-
existing but detected tracks (a track is considered non-existing 
when it differs at least in one time point from the ground 
truth), and Track Detection Failure (TDF) is the number of 
existing but undetected tracks. Again, in both movies the 
proposed method exhibited an extremely low ER, under 1%, 
and an advantage higher than 3.3% relatively to the best 
currently available cell tracking approach. Moreover, our 
method exhibits a very low ER even in highly overcrowded 
micro-colonies. It seems that the divide and conquer strategy 
we follow is better than global optimization 



  

 
Figure 3. Evaluation. (a) Top: Frame based TDR of the methods under 
evaluation in E. coli and S. Typhimurium cell movies. Bottom: Error Rate for 
the last frames 79-85 with severe overcrowding. (b) Error distribution of 
Schnitzcells (red) and proposed method (blue) in the S. Typhi. movie. More 
than 50% of the errors occur in the last two frame pair matchings. 

methods in such situations. As cell numbers increase 
exponentially, it is more probable for global optimization 
methods to get trapped to local minima. 

TABLE I.  EVALUATION ON OVERCROWDED MICRO-COLONY 

 TP FAT TDF ACC ER 

Proposed 911 21 21 97.7% 4.5% 

Moreover, in order to check if the proposed method remains 
robust when the overcrowded colonies become very large we 
assessed its performance (Table I) considering  two 
consecutive frames  of a salmonella cell movie (frames 75 and 
76, GT=932 cell matches). We observe that our method 
achieves very high Accuracy (over 97%) and very low ER 
(under 5%). Due to lack of space we provide in [16] the two 
successive image frames used (5 min. apart).  We mark cells 
on the same track using the same color. Gray cells are those 
that were not matched correctly. We remark that most errors 
occur close to the large colony’s boundaries, which indicates 
that our approach is indeed robust to severe over-population 
occurring at the colony's central region. Cells on the boundary 
exhibit usually higher mobility, so it is expected for some 
tracking errors to occur in the periphery, especially if the 
frame rate is small. 

B. Tracks Visualization   

Figure 4 illustrates how our method can constitute a useful 
visual analytics tool to microbiologists. Here, we visualize 
with pseudo-color single-cell tracks allowing us to assess how 
each cell's distance from the colony's centroid varies with 
time during its lifespan. We observe that more distant cells 
exhibit, on average, higher mobility (higher track "slopes") 
than cells near the centroid. This is expected and conforms to 
physical rules since boundary cells can move unconstrained 
compared to internal cells. The scatter plot quantifies the 
correlation of cell’s velocity to cell’s maximum distance from 
the colony's centroid. 

IV. CONCLUSIONS AND FUTURE WORK 

We presented a new divide-and-conquer cell tracking 
strategy inspired by block matching motion estimation for 
video compression. It can be used to track bacteria 
automatically and quantify at the single-cell level how their 
morphological and expression characteristics evolve with 
time. The algorithm is shown to outperform state of the art 
methods in overcrowded colonies. Moreover the single-cell  

 
Figure 4. Each colored line corresponds to a cell track depicting the cell's 
distance from the colony’s centroid as a function of time (time-series). Max. 
distance from colony centroid and cell velocity are correlated (scatterplot, 
Spearman Correlation ≈ 0.54). 

attributes extracted from analyzed time-lapse movies can be 
visualized over lineage trees or cell track trajectories which 
can help microbiologists formulate new hypothesis for further 
experimental or modeling work. 

We currently work on combining cell segmentation and cell 
tracking algorithms into a closed loop system in order to 
improve their accuracy and robustness. The structure of the 
lineage tree can help us identify and correct segmentation 
errors (e.g. due to over-segmentation) which in turn can 
improve cell tracking. This is especially useful since there is 
no automatic way to assess cell segmentation quality, while 
there are several ways to assess tracking quality. 
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