
  

  

Abstract—The scope of our work focuses on investigating the 
potential use of the built-in accelerometer of the smartphones 
for the recording of the respiratory activity and deriving the 
respiratory rate. Five healthy subjects performed an 
inspiratory load protocol. The excursion of the right chest was 
recorded using the built-in triaxial accelerometer of a 
smartphone along the x, y and z axes and with an external 
uniaxial accelerometer. Simultaneously, the respiratory airflow 
and the inspiratory mouth pressure were recorded, as reference 
respiratory signals. The chest acceleration signal recorded in 
the z axis with the smartphone was denoised using a scheme 
based on the ensemble empirical mode decomposition, a noise 
data assisted method which decomposes nonstationary and 
nonlinear signals into intrinsic mode functions. To distinguish 
noisy oscillatory modes from the relevant modes we use the 
detrended fluctuation analysis. We reported a very strong 
correlation between the acceleration of the z axis of the 
smartphone and the reference accelerometer across the 
inspiratory load protocol (from 0.80 to 0.97). Furthermore, the 
evaluation of the respiratory rate showed a very strong 
correlation (0.98). A good agreement was observed between the 
respiratory rate estimated with the chest acceleration signal 
from the z axis of the smartphone and with the respiratory 
airflow signal: Bland-Altman limits of agreement between -1.44 
and 1.46 breaths per minute with a mean bias of -0.01 breaths 
per minute. This preliminary study provides a valuable insight 
into the use of the smartphone and its built-in accelerometer 
for respiratory monitoring. 

I. INTRODUCTION 

The widespread use of mobile technologies represents an 
opportunity to facilitate the clinical practice and improve the 
healthcare delivery. Mobile health (mHealth), a term referred 
to the use of modern smart mobile devices (such as 
smartphones and tablets) in the medical and public health 
practice has been recognized as important due to its huge 
potential for bringing solutions in medical services [1]. 
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Moreover, special attention has been paid to using these 
mobile wireless technologies to improve the live condition of 
elderly population and individuals suffering from chronic 
diseases [2]. Respiratory rate (RR), an important vital sign, 
reflects the respiratory status of an individual and 
consequently is an indicator of deteriorating health. However, 
to date, RR is considered the vital sign recorded less 
frequently by medical staff [3]. To handle this situation, 
several authors are evaluating novel technologies including 
the use of smartphones, devices that integrate miniaturized 
sensors capable of non-invasively collect physiological 
signals [4], [5]. Additionally, RR has been evaluated by 
several monitoring technologies, classified in contact and 
non-contact devices with the patients [6]. Unfortunately, 
most of these technologies are expensive or are not available 
for most people. With the penetration of mobile technologies 
in the market, several strategies are being explored for the 
recoding of vital signs as the RR. Indeed, previous studies 
have shown the possibility of using the smartphone built-in 
sensors such as accelerometers [4], [5] or accessory 
hardware, as electrocardiogram electrodes or external 
accelerometers [7] to measure the respiration and derive the 
RR. In this work, we addressed the use of the built-in 
accelerometer of the smartphone as a low-cost and an easy-
to-use alternative for the recording of the chest movement 
during a respiratory protocol. Secondly, we aim to derive the 
RR from respiratory activity and compare it to RR extracted 
from the airflow signal in healthy subjects performing a 
respiratory protocol based on increments in the inspiratory 
load. 

II. MATERIAL AND METHODS 

A. Subjects and respiratory protocol 
Five healthy, non-smoking male subjects with no 

medical history and free of cardiorespiratory diseases were 
recruited to participate in the study (mean ± standard 
deviation: age 34.80 ± 4.76 years, height 1.77 ± 0.08 m, 
weight 82 ± 7.21 kg). The study was conducted with the 
subject’s written consent, and with the approval of the 
Institutional Review Board of the Institute for 
Bioengineering of Catalonia (IBEC), Barcelona, Spain. 
Subjects underwent an inspiratory load protocol in which 
they initially inhaled via a mouthpiece without any 
obstruction (quiet breathing) followed by an attached hand-
held inspiratory muscle training device (Threshold IMT, 
Philips Respironics, Amsterdam, The Netherlands) in sitting 
position and wearing a disposable nose clip to prevent air 
from escaping. The threshold IMT device imposes an 
adjustable inspiratory load which limits air to pass through 
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the device to the lungs. The expiration remains unloaded. 
The use of the IMT device was set to 9 cmH2O and 
thereafter to 17, 25 and 33 cmH2O of inspiratory load. The 
inspiratory load protocol without and with the use of the 
IMT device was performed during 1.5-minutes of work and 
with 3-minutes of rest. Furthermore, the subjects breathed 
without any specific breathing pattern.  

B. Recording of the signals 
Signals were recorded using the built-in triaxial 

accelerometer (LMS330DLC, ST Microelectronics) of a 
smartphone (Samsung Electronics Co., Seoul, South Korea, 
Galaxy SIII, model GT-I9300) running an Android operating 
system (version 4.3). This device records the acceleration 
components accx, accy and accz along the orthogonal x, y 
(gravity acceleration) and z directions, respectively, during 
the breathing motion. The smartphone was securely fastened 
in a upright position and facing outward to an elastic belt 
worn at the level of the right chest, between the midaxillary 
line and the anterior axillary line, and above the costal 
margin, to the best signal capture, as depicted in Fig. 1. Raw 
acceleration data was captured employing an Android 
application (AndroSensor) [8] up to a maximum frequency of 
200 Hz. Simultaneously, a reference acceleration signal 
(Aref), the inspiratory mouth pressure (Pmouth) and the 
respiratory airflow (AF) were recorded. Aref was recorded 
using an uniaxial capacitive accelerometer (K-Beam 8305A, 
Amherst, USA), adhered using double-sided tape to the lower 
left side of the smartphone (Fig. 1) and coupled with an 
interface module (UIM100C, Biopac Systems, Inc, Santa 
Barbara, CA, USA). Pmouth was measured by a differential 
pressure transducer (TSD160, Biopac Systems, Inc.). AF was 
recorded with a pneumotachograph (TSD107B, Biopac 
Systems). Pmouth and AF signals were amplified using 
modular differential amplifiers (DAC100C, Biopac Systems, 
Inc.) with a gain of 50 and an analog low-pass filter with a 
cut-off frequency of 300Hz. Data were sampled at a 
frequency of 2000 Hz using a data acquisition system 
(MP100, Biopac Systems, Inc.). Moreover, data were 
transferred to a personal computer to be displayed in real 
time on a video screen, allowing us to monitor the breathing 
and stored to further be off-line processed using the 
associated software (AcqKnowledge software v.3.2, Biopac 
Systems, Inc.). Synchronization between equipments was 
carried out manually. Afterwards, Pmouth, AF and Aref signals 
were subsampled to a frequency of 100Hz. AF signal was 
digitally band-pass filtered using a zero-phase second-order 
Butterworth filter with a cut frequency of 0.05 and 1 Hz. All 

data was analyzed offline using MATLAB (v. R2011b, 
Natick, MA, USA). Fig. 2 shows an example of the Pmouth, 
AF and accelerometer signals. 

C. Preprocessing of the smartphone accelerometer signal 
The sampling frequency of the smartphone is non-

constant. Taking the above into consideration, we first 
estimated the sampling frequency along all the accelerometer 
data, being found in the range of 199.99 ± 105.00 Hz (mean 
± standard deviation). Subsequently, the acceleration data of 
the smartphone were resampled to a fixed frequency of 100 
Hz using interpolation. We have chosen the accz signal as the 
most representative component of the acceleration, although, 
some of the respiratory activity was also recorded in the accx 
and the accy components of the acceleration. 

D. Denoising of accelerometer signals with the Ensemble 
Empirical mode decomposition 
Due to its nature, the accelerometer signals of the 

smartphone can be denoised by applying the empirical mode 
decomposition (EMD), an adaptive technique suitable for 
non-linear and non-stationary data analysis [9]. EMD 
decomposes a signal into a sum of zero-mean oscillating 
components referred to as intrinsic mode functions (IMFs). 
These IMFs are obtained in decreasing order of frequency, 
with the first IMFs containing high frequency components 
(related to the muscle vibratory activity) and the last IMFs 
containing the low frequency components (more associated 
to the breathing activity) [10]. However, a major drawback of 
the EMD is the mode-mixing phenomenon, that is, a single 
IMF either including signals of dramatically disparate scales, 
or a signal of the same scale appearing at different IMFs, and 
thus, with the consequence of losing its physical 
interpretation [11]. To overcome this undesired effect in the 
original EMD, the Ensemble Empirical Mode Decomposition 
(EEMD), a noise data assisted method, was developed [11]. 
In EEMD, white Gaussian noise is added to the original 
signal and then it is decomposed by the classical EMD 
algorithm into IMFs. This process is repeated for a certain 
number of trials. The added noise is suppressed in the 
ensemble averaged of the corresponding IMFs. We generated 
100 noisy trials and the Gaussian noise was added with a 

 
Figure 1. Position of the smartphone and the uniaxial accelerometer 

placed at the level of the right chest. 

 
Figure 2. Example of the raw signals acquired during the inspiratory 

load protocol with a load of 25 cmH2O. (a) Inspiratory pressure (Pmouth), 
(b) Airflow (AF). (c), (d) and (e) correspond to the accelerometer 

signals of the smartphone accx, accy, accz, respectively, and (f) is the 
accelerometer reference signal (Aref). 



  

signal to noise ratio of 30dB. The added noise was low-pass 
filtered using a zero-phase eight-order Butterworth filter with 
a cut frequency of 40 Hz. The main challenge when the 
EMD-based methods are used as denoising techniques is to 
adopt a criterion for the adequate selection of those IMFs 
with relevant information and reject the noise. The EMD was 
calculated using the routine developed in [12]. On the other 
hand, in [13] it has been suggested to use the Detrended 
Fluctuation Analysis (DFA) as a metric to identify noisy 
IMFs from EMD (DFA-EMD denoising). In this work, we 
extended the use of DFA to EEMD. DFA is a scaling 
analysis method for the study of long-range correlations in 
nonstationary time series data under the presence of noise 
[14]. Briefly, DFA first integrates the time series after mean 
subtraction. Then the integrated time series is split into 
equally sized boxes. In each box, a least-squares line is fitted 
to the data, which represents the local trend in the box. We 
calculate the detrended fluctuation function by subtracting 
the integrated time series and the local trend in each box. The 
root mean square (RMS) of the detrended fluctuation 
function is calculated. This procedure was repeated for 
different box sizes to provide a relationship between the 
average fluctuations and the box size. We use a box size 
ranging from 100 to 1000 in equals steps of 100. Finally, to 
reveal the presence of self-similarity scale in the time series, 
we estimate the scaling exponent α evaluating the slope of 
the RMS detrended fluctuation function and box sizes in a 
log-log plot. The correlations of the time series, characterized 
by the scaling exponent α, can be interpret as follows: α < 
0.5 is anti-correlated, α ≅ 0.5 is uncorrelated or white noise, 
0.5 < α < 1 is correlated, α ≅ 1, is pink noise, 1 < α < 1.5 is 
non-stationary or random walk, α ≅ 1.5 is Brownian noise. 
The α exponent was calculated for each IMF in order to 
distinguish between noise and noise free IMFs. Those IMFs 
whose α value was greater than or equal to 0.5 (correlated 
data) were related to the respiration while the rest of IMFs 

were considered as noise. The last mode (residue) of the 
EEMD was excluded from the study. Afterward, the 
accelerometer signal was reconstructed by summing the IMF 
identified with respiratory information. 

E. Correlation between the reference and the smartphone 
accelerometer signal 
Pearson’s correlation coefficient was used to analyze the 

linear association between the Aref and the accz raw signals 
across the inspiratory load levels. 

F. Derived respiratory rate and analysis 
To estimate the RR, first, the maximum values of the 

respiratory signal (R point) were detected in each respiratory 
cycle. Then, every 30-sec the RR was calculated as the 
average of the differences between the successive R points. 
This procedure was carried out in the AF (RRF) and accz 
(RRZ) signals.Strength and agreement between the RRF and 
the RRZ were determined by the Pearson’s correlation and the 
Bland-Altman plot, respectively. Moreover, the error was 
measured by the root mean square error (RMSE) over pairs 
of RRs at each level of inspiratory load. 

III. RESULTS 

The RR values for all subjects ranged from 11.57 to 26.32 
breaths per minute (0.19 to 0.44 Hz) in this study. Correlation 
coefficients between the raw Aref and the accz signals for each 
inspiratory load level are reported in Table 1. In general, a 
very strong correlation (from 0.80 to 0.97) was observed 
across the evaluated inspiratory loads. Moreover, a very 
strong linear correlation (R = 0.98) was obtained by 
comparing the RR values derived from the Aref and the accz 
signals as shown in Fig. 3a. Also, the Bland-Altman statistics 
demonstrated good limits of agreement between the pairs of 
RRZ and RRF values, ranging from -1.44 to 1.46 breaths per 
minute with a mean bias of 0.01 breaths per minute, as 
depicted in Fig. 3b. On the other hand, the estimation 
accuracy, measured in terms of the RMSE in the derived 
pairs of RR presented a low median error (from 0.13 to 0.28 
breaths per minute) and the interquartile range of the RMSE 
was higher with the increase of the inspiratory load from the 
quiet breathing to the 25 cm H2O of inspiratory load, as 
observed in Fig. 4. 

IV. DISCUSSION 

In this study, we evaluated the use of the built-in triaxial 
accelerometer of a smartphone placed on the chest wall for 
recording the breathing activity and deriving the RR during 
an inspiratory load respiratory protocol. Gupta and Dantu 
proposed the use of the accelerometer inside the cell phones 
to evaluate the patient’s breathing in emergency situations 
[4]. They evaluated the use of the cellphone in vertical and 

 
Figure 3. Comparison between the mean RRF and RRZ values. (a) 
Correlation plot and (b) Bland-Altman plot statistics. Each marker 

represents the measurement in an individual subject each 30-sec across 
the inspiratory load protocol. bpm: breaths per minute. 

TABLE I.  CORRELATION COEFFICIENTS BETWEEN THE RAW AREF 
AND THE ACCZ SIGNALS AT DIFFERENT LEVELS OF INSPIRATORY LOAD 

Subject QB 9 cmH2O 17 cmH2O 25 cmH2O 33 cmH2O 
1 0.96 0.96 0.96 0.93 0.88 
2 0.88 0.88 0.93 0.93 0.92 
3 0.96 0.96 0.97 0.96 0.96 
4 0.87 0.94 0.93 0.90 0.94 
5 0.83 0.87 0.80 0.81 0.82 

mean±SD 0.90±0.06 0.92±0.04 0.92±0.07 0.91±0.06 0.91±0.06 

QB: quiet breathing, SD: standard deviation. 

 
Figure 4. Box plot of the root mean square error between RRF and RRZ 

at different levels of inspiratory load. bpm: breaths per minute. 



  

horizontal orientation at different locations on the torso to 
determine the best acceleration component that can be used 
to measure the RR [4]. In the same line, Pechprasarn and 
Pongnumkul monitored the RR from a smartphone placed on 
the chest of a patient lying down [5]. They applied and 
algorithm based on smoothing and detrending the recorded 
signals and then estimating the RR by finding the highest 
peak of the power spectrum. In the present work, the chosen 
anatomical region to place the smartphone was the right 
chest, based on a previous study that used an uniaxial 
accelerometer [10]. Among the three acceleration 
components of the smartphone we selected the accz signal as 
it gives the most representative information of the chest 
excursion. However, we also observed some residual 
respiratory components in the accx and the accy acceleration 
signals. This suggests that more information can be extracted 
using more than one acceleration axis. Moreover, we 
evaluated the raw signals collected from the smartphone to 
derive the RR in healthy subjects. As a denoising technique, 
we applied the EEMD, a noise data assisted algorithm for 
processing nonlinear and nonstationary signals, as in the 
case of breathing. EEMD breaks down a signal into IMFs 
and makes no prior assumption on it. Recently, Mert and 
Akan have demonstrated that the use of DFA thresholded 
EMD based denoising (DFA-EMD) method is a powerful 
tool to separate those oscillatory components that are noisy 
[13]. They tested the DFA-EMD in synthetic and real 
epileptic electroencephalographic signals. We extended the 
use of this technique to the EEMD as the EMD is prone to 
the mode mixing effect. The α scaling component from DFA 
method was employed as a threshold to distinguish between 
noisy and not noisy IMFs and then to reconstruct the 
denoised signal.  

As expected, the use of DFA-EEMD provided an 
alternative to reduce the inherent noise from the collected 
raw smartphone accelerometer signals. However, the quality 
of the recorded signals requires more research in other 
settings outside the lab as in movement conditions as well as 
the effect of other noise that can be generated. On the other 
hand, to validate the use of the smartphone, we compared its 
recordings with the signals from the reference accelerometer 
attached over the smartphone. This comparison resulted in a 
higher correlation, which indicates how well the signals 
correlated with each other and thus ensured that the 
smartphone collects adequately the excursion of the chest. A 
strong correlation and a good agreement were found 
between the RR derived from the airflow signal (our gold 
standard) and the accelerometer signal. Furthermore, the 
94.67 % of the reported RR were inside the Bland-Altman 
limits of agreement. We have also observed that the 
interquartile range of the RMSE was low but it increased 
with the inspiratory load, from the quiet breathing to the 25 
cm H2O. We argued that this occurs because the higher the 
inspiratory load is, the higher is the challenge to maintain the 
breathing and in consequence the RR detection can be more 
difficult. 

V. CONCLUSION 
Our preliminary findings suggest the use of the 

smartphones as potential tools for recording the breathing 
movement using the built-in acceleration sensors. The use of 
the smartphone accelerometer signal allows deriving the 
respiratory rate. Contact and non-contact devices with the 
patients are being used currently but their use is limited by 
high costs. The use of mobile devices can become a 
promising technology for the non-invasively monitoring of 
physiological data with the associate benefits of being an 
accessible product of large scale consumption and an easy-
of-use. More studies will be needed to evaluate the breathing 
at different patterns, conditions and compare them across 
male and female populations. 
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