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Abstract

Of the 21 million blood components transfused in the United States during 2011, approximately 1 

in 414 resulted in complication [1]. Two complications in particular, transfusion-related acute lung 

injury (TRALI) and transfusion-associated circulatory overload (TACO), are especially 

concerning. These two alone accounted for 62% of reported transfusion-related fatalities in 2013 

[2]. We have previously developed a set of machine learning base models for predicting the 

likelihood of these adverse reactions, with a goal towards better informing the clinician prior to a 

transfusion decision. Here we describe recent work incorporating ensemble learning approaches to 

predicting TACO/TRALI. In particular we describe combining base models via majority voting, 

stacking of model sets with varying diversity, as well as a resampling/boosting combination 

algorithm called RUSBoost. We find that while the performance of many models is very good, the 

ensemble models do not yield significantly better performance in terms of AUC.

I. Introduction

Despite being a frequently employed routine medical practice, blood product transfusion is 

still associated with a small but severe risk of complication. Two adverse reactions in 

particular, transfusion-related acute lung injury (TRALI) and transfusion-associated 

circulatory overload (TACO), described in [3], are especially problematic: Between 2009 

and 2013, TRALI accounted for 30–45% of reported transfusion-related fatalities, and 

TACO accounted for 13–34% [2]. Furthermore, recent studies [4, 5] of a non-cardiac 

surgical patient subpopulation found that those experiencing TACO or TRALI stay in both 

the ICU and hospital roughly twice as long as those who do not, and have in-hospital 

mortality rates that are respectively 3.5 and 10 times greater. Consequently, these adverse 

events not only put the patients at a much higher risk of mortality and poor quality of life 

outcomes, but also lead to increased utilization of healthcare services potentially leading to 

an increase in healthcare cost and expenditure.

Because of these considerations, having the ability to predict the risk of TRALI and TACO – 

prior to an episode of transfusion – may potentially benefit patients, providers as well as the 

overall healthcare system. This is one of the specific aims of research in our group. We 

emphasize that this a priori prediction goal is distinct from studies that have looked at risk 

factors for both TRALI and TACO.
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In a previous work [6], we constructed several learning models, hereafter called base 

models, built on a dataset collected by Clifford et al. [4, 5]. One particularly appealing 

aspect of this dataset is the physician-adjudicated “ground truth” for patients suffering 

TACO/TRALI. That is, after employing novel screening techniques, each of the 

retrospectively-considered cases flagged as potential TACO or TRALI episodes were 

reviewed by a panel of physicians, including further expert review in case of disagreement. 

This provides a compelling reference for whether or not a patient suffered either TACO or 

TRALI.

One of the particular challenges of both this dataset as well as the field in general is a severe 

class imbalance between those patients suffering an adverse reaction and those that are 

transfused without complication. To whit, after pre-processing, out of 3398 observations in 

the set only 143 (~4%) suffered adverse reactions. While a triumph for medicine, this 

presents a non-trivial practical difficulty for prediction algorithms.

In the current work, we describe combining the previously built base models into ensemble 

models and their resulting impact on prediction. Our results suggest that the new ensemble 

models do not statistically significantly outperform top base models.

II. Dataset and Base Models

A. Dataset

The initial study population consisted of all non-cardiac surgical patients receiving general 

anesthesia that were present in Mayo Clinic’s perioperative datamart [4, 5]. This database 

contains near real-time patient data from monitored-care environments, and includes details 

relating to a variety of patient vital signs, history, procedure details and other relevant 

factors. All patients in the study population had previously given signed consent for the use 

of their medical records for research purposes, and the Mayo Clinic Institutional Review 

Board approved the study before its onset.

Following [4, 5], this study more specifically includes all adult non-cardiac surgical patients 

who received blood product transfusions in either 2004 or 2011. Exclusions are carefully 

described in the references, but summarized briefly patients were excluded if their 

conditions would preclude a clean ruling as to the presence of TACO/TRALI. For example, 

because TACO and TRALI are characterized by lung injury, patients with preoperative 

respiratory failure were excluded.

For further details regarding the dataset, including descriptive statistics and a discussion of 

the choice of years, we refer the reader to the above references.

B. Base Models

Considering our goal of predicting the likelihood of an adverse reaction before performing a 

transfusion, our base analysis proceeded as follows: Beginning with the raw data as 

described above, we first removed all variables which violated predictive causality, namely 

those that included information which would not be available pre-transfusion. For example, 

anything measured after blood products were transfused was excluded. Continuous variables 
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were normalized to zero mean and unit variance. Categorical variables with many levels 

were condensed into reduced sets, and several variables with similar medical implications, 

such as degrees of liver disease, were also combined into single predictors. Furthermore, 

several types of specific transfusion products (e.g. plasma and cryoprecipitate) were 

condensed into unified factors. A list of included predictors can be found in Table I.

The response variable considered is adverseEvent = TACO or TRALI. We found it necessary 

to combine both TACO and TRALI responses into a single category due to the low 

prevalence of TRALI in our dataset.

Given the above predictors and response we trained 8 base models, including logistic 

regression (glm), flexible discriminant analysis (fda), C5.0 (C5.0), bagged CART (treebag), 

sparse linear discriminant analysis (slda), support vector machine with radial basis kernel 

(svmR), single-hidden-layer feed-forward neural network (nnet), and random forest (rf). 

Discussions of these algorithms can be found in [7]. All models were trained using the well 

known statistical software R [8] making particular use of the caret package [2]. After 

dividing the data into training (70%), evaluation (10%), and final test (30%) sets, the 

training set was oversampled using the SMOTE algorithm [9]. Oversampling, discussed 

below, is necessary due to the low prevalence of true-positive cases of adverse reactions. 

Three repeats of ten-fold cross-validation were then performed over a grid of possible model 

parameters using the training set. Care was taken to ensure all models were trained on 

identical samples of the training set. From this the optimal parameters for a given model 

were selected. Selection was done by comparing AUC’s, and in the case of similar AUC’s 

choosing the most parsimonious model. Additionally, using the evaluation set, optimal class 

probability thresholds were determined by first constructing ROC curves then choosing a 

threshold that maximized similarity to a perfect two-class model (i.e. sensitivity and 

specificity both equal to unity). Performance of models based on the optimized threshold 

and a naïve threshold of 50% of the predicted scores was then evaluated on the final test set.

III. Oversampling

One important characteristic in our dataset is a dramatic class imbalance between patients 

responding adversely to transfusion (the minority class) and those presenting no 

complications (the majority class). Specifically, the entire dataset contained only 143 

observations of adverse events out of a total of 3398 observations, roughly a 4% prevalence. 

Following a class-balanced data allocation using the percentages described in Section II, the 

final test set included 28 adverse events out of 650 observations.

One technique commonly employed to mitigate the consequences of such a class imbalance 

is that of oversampling. Oversampling methods alter a dataset in such a way as to bring the 

minority and majority classes to similar proportions. While there are a variety of possible 

approaches, in the current study we chose to build our base models using training sets 

oversampled via the SMOTE [9] method. SMOTE enhances the training set by using a 

nearest-neighbors algorithm to create artificial-but-similar observations of the minority class 

while also down-sampling observations of the majority class. These two actions in concert 
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balance the majority and minority classes, and frequently improve models’ predictive 

performance [10].

While we used SMOTE for training the base models, one of our ensemble models is based 

on the RUSBoost [11] algorithm. This algorithm implements a different sampling technique 

called random under-sampling. In random under-sampling, observations of the majority 

class are removed until balance is achieved.

IV. Ensemble Learning

Ensemble learning is a general term for the concept of combining the predictions of several 

learning models, frequently presumed weak, into a single “ensemble” model. The ensemble 

model is often found to yield better performance [7]. Common approaches to ensemble 

learning include bagging, boosting, and stacking, amongst others [7].

Briefly, bagging takes different random samples of data, trains models on the different 

samples, and then either averages or votes on the results. It is frequently used with low bias / 

high variance learners like decision trees, with a goal of reducing the overall variance.

Boosting in contrast begins by constructing a single model on a dataset, then producing a 

series of new models, iteratively training each new model on the observations that were 

misclassified by the previous model in the series. The process is continued until a stopping 

condition is met. In practice, new models are not trained solely on previously-misclassified 

observations, but rather on new datasets that have been resampled to include a proportionally 

greater number of observations of the misclassified points.

Stacking consists of training a new meta-learning model, or combiner, on the predictions of 

the base models.

Here we consider two forms of ensemble learning, majority-vote bagging and stacking, as 

well as a hybrid ensemble/oversampling algorithm called RUSBoost.

A. Majority Vote

This straightforward ensemble technique simply counts the class predictions of all base 

models and assigns a class based on the majority opinion. This is a direct application of 

bagging, but can be distinguished from other common forms, e.g. the bagging internal to a 

random forest, in that it combines the results of distinct families of algorithms.

B. Stacking

Stacking consists of training a new model, frequently called a combiner, on the probabilities 

produced by the base models. Specifically, one trains the combiner on the probabilities that 

result from the base models learning the training set. To predict using the stacked model, one 

first predicts using the base models, then feeds these predicted probabilities into the 

combiner.
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An important concept in deploying stacked models is the choice of base models to include in 

the ensemble. If the base models are always in agreement the stacked model will realize no 

performance benefit.

We chose diverse models in two ways. First, the base models that we began with are diverse 

in algorithm. For example our base model choices include a linear model, a bagged tree 

model, a boosted tree model, a neural network, a support vector machine, a regression 

splines model, discriminant analysis and a random forest. Some of these models include 

implicit feature selection or regularization schemes; others include internal bagging or 

boosting. This variety of learning methods thus produces a set with a natural degree of 

diversity.

Second, among these relatively diverse models we chose a maximally diverse subset. We did 

this via k-means clustering on an agreement matrix (described below), as well as 

hierarchical clustering on the Euclidean distance between base model predictions on the 

evaluation set. We found both methods produced very similar maximally diverse model sets.

Details of the clustering are as follows: For the k-means model clustering we first predicted 

all n = 8 base models on the evaluation set. We then created an “agreement matrix,” which is 

an n × n matrix with each element consisting of the fraction of observations where a given 

pair of models predicted the same patient outcome. Clustering using k = 4 produced a set of 

diverse models. For hierarchical model clustering, we formed a model-dissimilarity matrix 

by taking the predicted probabilities of the base models on the evaluation set and calculating 

the Euclidean distance between each models’ set of probabilities. We then used hierarchical 

clustering on this dissimilarity matrix to produce a set of diverse models. This set was very 

similar to the set found by k-means hence we chose a hybrid of the two which consisted of 

the rf, nnet, and fda models described above.

For the combiner model we trained logistic regression on both the set of all base models 

(stackAllGLM) as well as the diverse set of base models (stackDivGLM). In addition using 

the diverse set we trained random forest (stackDivRF), and Bayesian generalized linear 

(stackDivBayes) models.

C. RUSBoost

RUSBoost is an algorithm specifically designed to target class-imbalanced datasets. It 

combines the benefits of the AdaBoost model [12] with those of random-undersampling 

(RUS). It is similar to the SMOTEBoost [13] algorithm but uses undersampling at each 

boosting step in place of SMOTE. The two suggested advantages are that random 

undersampling is a less complicated algorithm than SMOTE, and that the datasets produced 

by RUS are smaller than those produced by SMOTE, thus resulting in shorter computational 

time. We made use of the Stephen Carnagua’s implementation of RUSBoost [14].
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V. Results

A. Receiver-Operator Curves

Test set AUC’s and their 95% confidence intervals are shown for all models in Fig. 1. The 

confidence intervals were calculated via bootstrap using 2000 class-stratified sample passes. 

By AUC, the top performing model was RUSBoost, with an AUC of 0.87. The worst 

performing model by AUC was the majority vote, with a score of 0.74.

We compared the areas under the final test ROC’s using DeLong’s method [15]. We found 

no statistical difference between top performers. We also compared the ROC curves directly 

using Venkatraman’s method [16], again finding no statistically significant difference 

between top performers.

B. Sensitivity

All of the classifiers we considered produce both probabilities that a patient will suffer an 

adverse reaction as well as a final yes/no adverse reaction prediction. One can therefore tune 

the sensitivity of a model by varying the probability threshold at which a patient is predicted 

to react adversely. We investigated model performance under alternate class probability 

thresholds by using test set ROC’s to choose thresholds which were maximally similar to a 

perfect model (e.g. sensitivity and specificity both equal to unity). The results for both 50% 

and alternate thresholds are shown in Tables II and III.

VI. Conclusion

We have employed three ensemble learning methods with the goal of improving the 

accuracy of predicting two complications of blood transfusion, TACO and TRALI. We found 

that the while the ensemble methods did not statistically significantly outperform the top 

base models, the results from both base and ensemble models are quite encouraging, with 

AUC’s of the top 5 averaging 0.84 and sensitivities between 0.82 and 0.92.

Given the class imbalance present in the data, extensions to the current work that are likely 

to be helpful may include introducing a cost sensitive learning approach to the base models 

[10]. We are also working to expand the observations in our dataset.

We are hopeful that this research will lay the foundation for deployable predictive models of 

adverse reactions to blood transfusion, enhancing clinical practice and aiding in the delivery 

of high quality medical care.
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Figure 1. 
Final Test AUC’s with 95% Confidence Intervals
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Table I

Predictors

ACEI Use Age

ARB Use ASA number

Aspirin (preOp) Beta Blocker Use

Clopidogrel Use Diuretic (preOp)

Emergency vs Elective Surgery Fluid Ratio

Gender Height

Hist Coronary Artery Disease Hist Congestive Heart
Failure

Hist Chronic Kidney Disease Hist Diabetes

Hist Chronic Obs. Pulmonary
Disease

Hist Liver Disease

Hist Myocardial Infarction Sepsis (preOp)

Mixed or Non-RBC Transfusion Hist Smoking

Statin Use Surgical Specialty

Warfarin Use Weight

Year
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Table II

Test Set Results Using Alternate Probability Thresholds

AUC Sensitivity Specificity Accuracy Accuracy

RUSBoost 0.87 0.93 0.64 0.65

fda 0.83 0.86 0.66 0.67

C5.0 0.80 0.86 0.60 0.61

treebag 0.83 0.82 0.71 0.71

sparseLDA 0.82 0.82 0.73 0.73

rf 0.83 0.82 0.71 0.71

stackDivRF 0.82 0.82 0.68 0.69

stackFullGLM 0.83 0.79 0.72 0.73

stackDivGLM 0.82 0.79 0.71 0.72

stackDivBayes 0.82 0.79 0.73 0.73

majorityVote NA 0.79 0.73 0.73

svmRadial 0.81 0.75 0.72 0.72

glm 0.81 0.71 0.74 0.74

nnet 0.79 0.61 0.79 0.78
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Table III

Test Set Results Using Naive (50%) Thresholds

AUC Sensitivity Specificity Accuracy Accuracy

RUSBoost 0.87 0.64 0.89 0.88

fda 0.83 0.75 0.81 0.81

treebag 0.83 0.61 0.80 0.79

rf 0.83 0.71 0.78 0.78

stackFullGLM 0.83 0.79 0.75 0.75

stackDivBayes 0.82 0.64 0.81 0.81

stackDivGLM 0.82 0.71 0.81 0.80

sparseLDA 0.82 0.71 0.76 0.76

stackDivRF 0.82 0.71 0.80 0.80

glm 0.81 0.71 0.76 0.76

svmRadial 0.81 0.57 0.80 0.79

C5.0 0.80 0.57 0.81 0.80

nnet 0.79 0.68 0.78 0.77

majorityVote NA 0.68 0.81 0.80

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 April 25.


	Abstract
	I. Introduction
	II. Dataset and Base Models
	A. Dataset
	B. Base Models

	III. Oversampling
	IV. Ensemble Learning
	A. Majority Vote
	B. Stacking
	C. RUSBoost

	V. Results
	A. Receiver-Operator Curves
	B. Sensitivity

	VI. Conclusion
	References
	Figure 1
	Table I
	Table II
	Table III

