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Abstract— Alzheimer’s disease (AD) is one of the fastest 
growing neurological diseases in the world. We evaluate 
multivariate multiscale sample entropy (mvMSE) and 
multivariate multiscale permutation entropy (mvMPE) 
approaches to distinguish resting-state magnetoencephalogram 
(MEG) signals of 36 AD patients from those of 26 normal 
controls. We also discuss about choosing the appropriate 
embedding dimension value as an effective parameter for 
mvMPE and MPE for the first time. The results illustrate that 
both the mvMPE and mvMSE can be useful in the diagnosis of 
AD, although with different running times and abilities. In 
addition, our findings show that the MEG complexity analysis 
performed on deeper time scales by mvMPE and mvMSE may 
be a useful tool to characterize AD. In most scale factors, the 
average of the mvMPE and mvMSE values of AD patients are 
lower than those of controls. 

I. INTRODUCTION 

Alzheimer’s disease (AD), which is the most common 
type of dementia, is a neurodegenerative disorder affecting 
more than 30 million people in the world [1]. Changes in 
biomedical signals, such as electroencephalogram (EEG) and 
magnetoencephalogram (MEG), have been investigated 
widely for the diagnosis of AD in the few past decades [2, 3].  

Nonlinear methods, such as entropy-based techniques, 
fractal dimension, and Lempel–Ziv complexity of MEG and 
EEG recordings, showing the regularity or complexity of 
signals, are helpful and widely used to characterize the brain 
activity of AD patients. Research illustrates that EEG and 
MEG background activity is less complex and more regular 
in AD patients than in healthy control subjects [3, 4]. 

One of the most important approaches for quantifying the 
degree of regularity of signals is entropy [5]. Sample entropy 
(SaE) [6] and permutation entropy (PE) [7] are two popular 
entropy metrics. Both PE and SaE have their own advantages 
and disadvantages [2]. PE is considerably faster than SaE 
although SaE is more flexible [7]. However, these entropies 
are limited to evaluating the values of entropy for only one 

 
 

temporal scale, the one associated with the original sampling 
of the signals. This may limit the ability of these to inspect 
dynamics residing at longer temporal scales. 

In this sense, multiscale (sample) entropy (MSE) [8] and 
multiscale PE (MPE) [9] were proposed to calculate entropy 
over a range of scales to evaluate the complexity of a time 
series. In fact, multiscale-based approaches offer much more 
information. Since biomedical signals are often acquired by 
many channels, multivariate MSE (mvMSE) [5] and 
multivariate MPE (mvMPE) [9] have been recently proposed. 
In [9] and [2], the effects of AD on the mvMPE and mvMSE, 
respectively, of EEG signals were studied. Although both 
EEG and MEG recordings have high temporal resolution, 
MEG signals have some advantages over the EEG signals. 
The MEG recordings are not related to any reference point 
and they are less influenced by extra-cerebral tissues than the 
EEGs [10]. In addition, the number of subjects was low [2, 
9]. This may affect the reliability of the results. Moreover, in 
those papers [2, 9], only frontal and occipital areas, over eight 
channels, were considered and the role of the appropriate 
embedding dimension, a vital parameter in PE-based 
methods, was not discussed.  

To tackle these limitations, we investigate mvMPE and 
mvMSE of 62 subjects’ MEG signals (36 AD patients and 26 
controls) for five main regions, including anterior, central, 
right and left lateral, and posterior areas, using eight channels 
for each region.  

II. MATERIALS 

A. Subject Groups 

All 62 subjects gave their informed agreement for the 
study, which was approved by the local ethics committee. 
Diagnoses were confirmed with thorough tests. To screen the 
cognitive status, the mini-mental state examination (MMSE) 
was utilized [11]. 
The 36 AD patients (24 women; age = 74.06 ± 6.95 years, 
mean± standard deviation, SD; MMSE score = 18.06 ± 3.36, 
mean±SD) met the criteria for probable AD according to the 
guidelines of the NINCDS-ADRDA [12]. 

The CON group was formed by 26 subjects (17 women; 
age = 71.77 ± 6.38 years; MMSE score = 28.88 ± 1.18, 
mean±SD). The difference in age between two groups was 
not significant (p-value = 0.1911, Student’s t-test). 

  
B. MEG Data 

Resting state MEG data were obtained with a 148-
channel whole-head magnetometer (MAGNES 2500 WH, 4D 
Neuroimaging) in a magnetically shielded room at the MEG 
Centre Dr. Pérez-Modrego (Spain). The subjects laid on a 
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hospital bed in a relaxed state with eyes closed. They were 
asked to avoid falling asleep and not to move head and eyes. 
For each participant, five minutes of MEG resting state 
activity were recorded at a sampling frequency (fs) of 
169.54Hz. The signals were divided into segments of 10s 
(1695 samples per channel) and visually inspected using an 
automated thresholding procedure to discard segments 
significantly contaminated with artefacts [11]. The effect of 
cardiac artifact was reduced from the recordings using a 
constraint blind source separation procedure [13] to avoid 
bias in the computation of multivariate techniques. Finally, a 
bandpass FIR filter with cut-offs at 1.5Hz and 40Hz was 
applied to the data. 

III. METHODS 

A. Multiscale Entropy 

Both MSE and MPE include two main steps:  
1. First, a “coarse-graining” process is applied to a P-

variate (channel) signal  
, 1{ }C

k b by Y , k=1,…,P and C 

is the length of the each signal of each channel. 
According to (1), each element of the coarse-grained 
time series is defined as: 

( )
, ,

( 1) 1

1
         1
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          (1) 

where  is the time scale factor.  

2. In the second step, for a defined scale factor, the mvSE 
or mvPE is calculated [5, 9].  

B. Multivariate Entropy Methods  

1) Multivariate Permutation Entropy 
For each scale factor  and for each channel k=1,2,…,P, 

assume the coarse-grained time series is 

,1 ,2 ,{ , ,..., }k k k Nx x xz . At each sample t of z, a vector 

including the d-th subsequent values is constructed 

as: , , , ( 2) , ( 1){ , ,..., , }k t k t l k t d l k t d lx x x x      for t=1,2,…,N-(d-1)l, 

where d, named the embedding dimension, determines how 
much information is contained in each vector and l is the 
time delay. To calculate the PE, the d values 

, , , ( 2) , ( 1){ , ,..., , }k t k t l k t d l k t d lx x x x      are associated with 

numbers from 1 to d and arranged in increasing order as 

1 2 1, ( 1) , ( 1) , ( 1) , ( 1){ , ,..., , }
d dk t j l k t j l k t j l k t j lx x x x
         [9]. For 

different samples, there will be d! potential ordinal patterns, 

 , named “motifs”. For each t , ,( )k tp   contains the 

relative frequency as follows: 
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where # means cardinality [7, 14]. 

The differences between Eq. (2) and the correponding 
equation in the original definition of PE [7] is that the 
relative frequency in mvPE is devided by the number of 

channels P  so that 
!

,
1 1

1
P d

k j
k j

p
 

  holds.  

The marginal relative frequencies demonstrating the 
distribution of the motifs are defined as follows: 

,
1
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j k j
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p p


                                (3) 

Consequently, mvPE for each scale  , is deifind as: 
!

1

( , , ) ( ) ln ( )
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  X            (4) 

When all marginal relative frequencies have equal 
probabilities, the largest value of PE is obtained, which has a 

value of ln( !)d . In contrast, if there is only one ( )jp   

different from zero, which demonstrates a completely 
regular signal in every channel, the smallest value of PE is 
bounded by 0. 

2) Multivariate Sample Entropy 
To calculate the mvSE, multivariate embedded vectors 

are initially generated [5]. In [15], the Takens embedding 
theorem for multivariate concept is described. Assume we 

have a P-channel signal ,   
, 1,  1{ }k P i N

k i k ix  
 X  where N is the 

length of each time series  
1{ }P

k kx . The multivariate 

embedded reconstruction is defined as: 

1 1 1 2 2 21, 1, 1, ( 1) 2, 2, 2, ( 1)

, , , ( 1)
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, ,..., ]                                                (5)
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where 1 2[ , ,..., ]pm m mM and 1 2[ , ,..., ]p  τ are the 

embedding and the time lag vectors, respectively. 

For P-variate time series  
1{ }P

k kx , the mvSE algorithm, as 

a natural extension of standard univariate sample entropy, is 
shown as follows [5]: 

1. Form multivariate embedded vectors ( ) m
mX i R  

where i =1,2,...,N-n and n=max{M}×max{τ}. 
2. Calculate the distance between any two composite 

delay vectors ( )mX i  and ( )mX j  as the maximum 

norm. 

3. For a given ( )mX i  and a threshold r, count the number 

of instances Pi where [ ( ), ( )] ,  m md X i X j r i j  . 

Next, calculate the frequency of occurrence as 

1
( )m

i iB r P
N n




 and define a global quantity 

1

1
( ) ( )

N n
m m

i
i

B r B r
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 . 

4. Extend the dimensionality of the multivariate delay 
vector in (5) from m to (m+1) (keep the dimension of 
the other variables unchanged). 

5. Repeat steps 1 to 4 and find ( 1) ( )km
iB r . Next, calculate 

( 1) ( )m
iB r which denotes the avearge over all k 

of ( 1) ( )km
iB r . Finally, find ( 1) ( )mB r which stands for 

the avearge over all i of ( )iB r  in an (m+1)-

dimensional space. 
6. Finally, MVSE is defined as: 



 

( 1) ( )
( , , , ) ln

( )

m

m

B r
MVSE r N

B r

 
   

 
M τ  

where r and N are respectively the tolerance level and 
the length of the time series, and M and τ were 
defined earlier.  

It should be added that because multi-channel signals 
may have different amplitude ranges, the distances 
calculated on embedded vectors may be biased toward the 
largest amplitude ranges variates. For this reason, we scale 
all the data channels to the same amplitude range, and select 
the range [0,1] as a preferred choice [5]. 

C. Multivariate Multiscale Permutation and Sample 
Entropies 

To calculate the mvMPE or mvMSE, for each scale 
factor  , respectively, mvPE or mvSE of the coarse-

grained time series are calculated.  
Choosing an acceptable embedding dimension d in PE, 

mvPE and mvMPE is challenging. To work with reliable 
statistics when calculating PE, it is highly recommended 

!d N [14]. In addition, when d is too large, the 
computation time will be higher. While d is high, the 
number of accessible states will be large, and the value of 
the PE will probably be more reliable. All in all, we should 
make a trade-off between the aforementioned cases. For 
mvPE, because the number of samples increases to PN , an 

appropriate embedding dimension should follow !d PN . 
Accordingly for mvMPE, since using scale factor  causes 

the length of signal decrease to 
PN


, it is recommended 

!
PN

d


 .  

IV. RESULTS AND DISCUSSION 

To evaluate the abilities of mvMPE and mvMSE 
approaches using MEG signals in terms of regions, 
according to Fig. 3 in [16], five scalp areas (anterior, left and 
right lateral, central, and posterior) were defined. Both the 

mvMSE and mvMPE algorithms were applied for channels 
15, 17, 19, 21, 23, 25, 27, 29 (central region), 31, 32, 48, 49, 
51, 52, 69, 70 (anterior region), 64, 66, 68, 107, 111, 125, 
127, 129 (right lateral region) 53, 55, 57, 96, 100, 114, 116, 
118  (left lateral region), 39, 41, 59, 62, 102, 105, 120 and 
123 (posterior region) with a maximum of scale factor 

10  , embedding dimension of 4 for mvMPE, embedding 

dimension of 1 for mvMSE and 

0.15 (standard deviation of the normalized time series)r  

for each data channel according to [6] and [5]. 
The mvPE and mvSE values of each coarse-grained 

sequence versus the scales are shown in Fig. 1 and Fig. 2, in 

that order. The error bars at each scale show the SD of the 

average of results for AD and control groups, which are 

illustrated in red and blue, respectively.  

As can be seen in Fig. 1, the averages of mvPE values of 
AD patients in scale factor 1 are larger than those of the 
controls. This appears to contradict [3, 4] showing AD 
patients are less complex and more regular than in controls. 
However, in the deeper scale factors, for each region, either 
the average of mvPEs of the AD group is lower than that of 
controls or the differences between the results of two groups 
are small. This declares the importance of mvMPE and 
shows that the MEG contains information in deeper scales as 
well as the smallest one. 

For anterior (A), central (C), and posterior (P) regions, the 
average values of mvMSE for controls are higher than (or 
approximately equal to) those of the corresponding AD 
patients. For right lateral (R) and left lateral (L) regions, in 
scale factors 1 to 6, the mvMSE values for AD patients are 
lower than those of the corresponding controls. However, for 
the regions R and L and scale factors 7 to 10, the averages of 
mvSE values of AD groups are larger than those of controls. 
This illustrates that, for these two regions and for scale 
factors 7 to 10, mvMSE values contradict what claimed in 
[3, 4]. However, there are no significant differences between 
groups. 

 
Fig. 1. Average values for mvMPE over 10 scale factors for AD (red) and control groups (blue) in each scalp region: anterior (A), central (C), right 
lateral (R), left lateral (L), and posterior (P). Bars indicate standard deviation. Asterisks indicate scales with significant differences between groups. 



 

 

Fig. 2. Average values for mvMSE (b) over 10 scale factors for AD (red) and control groups (blue) for 5 scalp regions, described in Fig. 1. 

A paired t-test was also run for AD patients vs. controls. 
We adjusted the false discovery rate independently for each 
multivariate entropy measure. The scales and regions were 
the adjusted p-values were significant are shown with * in 
Fig. 1 and Fig. 2. This shows that mvMPE, in all five 
regions, achieves significant differences at scales 3, 4, and 5. 
On the other hand, the behavior of mvMSE is less uniform 
across regions. Only scales 2 and 3 show significant 
differences in all regions. 

In brief, we have studied the MEG background activity of 
AD patients using mvMPE and mvMSE. This study benefits 
from the consideration of MEG signals, which may have 
some advantages over EEGs, a larger sample size, and the 
consideration of five regions and more channels over the 
scalp, in comparison with [2]. In addition, we have discussed 
a proper embedding dimension for mvMPE and mvPE for 
the first time. The results showed that most significant 
differences appeared for β>1, thus highlighting the 
importance of multiscale evaluations of brain activity. 

In future work, we intend to consider multivariate 
multiscale fuzzy entropy and parameterize the curves 
obtained by each technique to assess the performance of 
existing and novel metrics in the context of AD diagnosis. 
We will also investigate the effect of gender on the results. 
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