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Abstract

Sleep apnea is a serious health condition that affects many individuals and has been associated 

with serious health conditions such as cardiovascular disease. Clinical diagnosis of sleep apnea 

requires that a patient spend the night in a sleep clinic while being wired up to numerous obtrusive 

sensors. We are developing a system that utilizes respiration rate and breathing amplitude inferred 

from non-contact bed sensors (i.e. load cells placed under bed supports) to detect sleep apnea. 

Multi-harmonic artifacts generated either biologically or as a result of the impulse response of the 

bed have made it challenging to track respiration rate and amplitude with high resolution in time. 

In this paper, we present an algorithm that can accurately track respiration on a second-by-second 

basis while removing noise harmonics. The algorithm is tested using data collected from 5 patients 

during overnight sleep studies. Respiration rate is compared with polysomnography estimations of 

respiration rate estimated by a technician following clinical standards. Results indicate that certain 

subjects exhibit a large harmonic component of their breathing signal that can be removed by our 

algorithm. When compared with technician transcribed respiration rates using polysomnography 

signals, we demonstrate improved accuracy of respiration rate tracking using harmonic artifact 

rejection (mean error: 0.18 breaths/minute) over tracking not using harmonic artifact rejection 

(mean error: −2.74 breaths/minute).

I. INTRODUCTION

Sleep apnea is a prevalent condition associated with poor health outcomes such as 

cardiovascular disease [1]. It is estimated that 9% of middle aged women and 24% of middle 
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aged men suffer from sleep apnea [2] and the majority of individuals with sleep apnea are 

undiagnosed [3]. Overnight attended polysomnography (PSG) is the gold standard for the 

diagnosis of sleep apnea. During a PSG test, patients are wired to numerous sensors 

including but not limited to electrodes placed on the head, chest, face, legs, and arms to 

measure brain, heart and muscle activity; belts placed around the chest and abdomen to 

measure movement of breathing; and sensors placed in the nose and over the mouth to 

measure airflow during breathing. Patient sleep has been shown to be altered during 

overnight PSG testing [4], and it has been suggested that discomfort caused by the various 

sensors attached to the patient may be partially to blame [5].

Load cells (i.e. force sensors) placed under the supports of a bed have been shown to have 

great utility for non-contact detection of various aspects of sleep while an individual lies on 

the bed. In our lab, we have used load cells to detect lying position [6], distinguish between 

sleep and wake [7], and have even utilized load cell data to detect sleep apnea[8, 9]. Load 

cells have also been shown to be able to detect breathing [10, 11].

When an individual lies on the bed, their breathing causes small periodic displacements of 

mass (e.g. visceral organs moved as the diaphragm contracts and relaxes) that can be 

detected by load cells placed under the supports of the bed. Estimating respiration rate from 

this periodic signal in the time domain requires that the signal must first be low-pass filtered 

to remove high frequency vibrations in the signal caused by the heart beating and the bed/

mattress system resonance. Next, it is necessary to locate peaks and troughs in the filtered 

signal that indicate the location of individual breaths. However, due to the wide range of 

possible respiration rates, we and others [11] have found that extraneous peaks in the filtered 

signal hamper the accurate estimation of a breathing rate. These extra peaks manifest as 

higher order harmonics of the breathing signal as can be observed in Fig. 1. Notice in Fig. 1 

that the true respiration rate is shown in black. These higher order spectral harmonics 

present in the breathing estimation that can make it challenging to accurately estimate 

respiration rate.

In an attempt to eliminate extraneous peaks and troughs in the load cell signal, one group 

developed a method [11] that utilizes several different low-pass filters. The specific filtered 

signal used to detect peaks/troughs was chosen by finding the filtered signal that resulted in 

the least variance of breathing amplitude estimated using the detected peaks and troughs. 

Since accurate detection of breathing is important in our efforts to detect sleep apnea using 

the load cell signals, this solution would not be ideal as highly variable breathing amplitudes 

are expected during apneic periods.

Another approach for detecting respiration rate is to analyze the load cell signal in the 

frequency domain. However, the same phenomenon that leads to the extraneous peaks/

troughs in the time domain signal leads to higher order harmonics in the frequency domain 

that are oftentimes more powerful than the frequencies associated with the actual breathing 

rate. In this paper, we present an algorithm that is able to accurately track respiration rate 

from non-contact load cell signals using frequency domain techniques that detects higher 

order harmonics and utilizes harmonic artifact rejection (HAR). We compare this algorithm 
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to respiration rates estimated using a similar algorithm without HAR and with standard PSG 

estimates of respiration rate.

II. METHODS

A. Subjects

Five subjects (4 female, 1 male) were recruited from individuals undergoing regularly 

scheduled overnight PSG testing at the Pacific Sleep Program sleep lab (Portland, OR). The 

mean age was 35.2 ±14.5 years, and the mean BMI was 30.7±7.4 kg/m2. (OHSU eIRB 

#6308)

B. Setup

A single load cell was placed beneath each of the five supports of the queen sized bed at the 

sleep lab. Each subject was outfitted with an array of sensors commonly used to monitor 

sleep during overnight PSG. Specifically, a nasal pressure cannula and thermistor were fitted 

in their nostrils and belts were placed around their chest and abdomen to monitor breathing. 

Load cell data was collected concurrently with the PSG sensors during each overnight test. 

Each subject’s data were visually inspected to select a 2 hour period for analysis that 

contained quiescent breathing and minimal movement.

C. Respiration Rate (Ground Truth)

Clinical estimation of respiration rate from PSG breathing signals typically involves 

counting the number of breaths for a specified duration of time and then dividing by that 

time period to calculate the number of breaths per minute. Following this convention, PSG 

breathing signals from the nasal pressure cannula, thermistor, and chest/abdomen belts were 

visually inspected by a technician. The technician manually marked the peak of every breath 

in the PSG breathing signals during the 2 hour period selected for each subject. The amount 

of time each breath takes, measured as seconds per breath, was estimated by measuring the 

time between each consecutive peak (i.e. the inter-peak interval (IPIPeaks). Then, a vector of 

respiration rates using the IPIPeaks from the PSG signal (RRPSG) was estimated for each 

subject’s 2 hour segment using:

(1)

where RRPSG is measured in breathes per minute. For comparison with respiration rate 

estimates from the load cell signals, a fifteen second moving window was used to average 

the values in RRPSG creating a new RRPSG vector containing averaged respiration rate 

estimates at a 1 Hz sampling rate.

D. Load Cell Respiration Rate (No HAR)

The following steps outline the algorithm used to track respiration rate using the frequency 

domain without HAR.

1. Decimate. The data from each load cell, originally collected at a sampling rate of 

500 Hz, were decimated to a sampling rate of 10 Hz.
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2. Calculate center of pressure. The data from each load cell was combined to create 

a center of pressure signal (CoPY) estimated along the long axis of the bed (i.e. y 

axis). Specifics about calculating CoPY are in [6].

3. Movement artifact rejection. Movement in the CoPY signal was automatically 

detected and removed. As part of the movement removal process, the linear trend 

between movements was subtracted from the load cell signals.

4. Remove baseline drift. Any remaining baseline wander was further removed using 

a high-pass 6th order Chebyshev Type II filter with a stopband edge frequency of 

0.05 Hz that attenuated the stopband by 40 dB.

5. Heart rate rejection. Artifacts associated with the high frequency vibrations in the 

signal caused by the heart beating and the bed/mattress system resonance were 

removed using a low-pass 7th order Chebyshev Type II filter with a stopband edge 

frequency of 0.95 Hz that attenuated the stopband by 40 dB.

6. Data segmentation. The non-movement segments of the CoPY signal were divided 

into overlapping 15 second windows that were offset by 1 second each.

7. Estimate power spectral density. The power spectral density (XCoPy) was estimated 

with a modified periodogram for each window using:

(2)

where Δt is the time between samples, hn is a Hamming window, and f is the vector 

of frequencies.

8. Select spectral peak. The respiration rate in breaths per minute for each window 

(i.e. RRCoPy) was estimated as the most powerful frequency peak in XCoPy between 

the frequencies of 0.1 Hz and 0.6 Hz (representing breathing rates between 6 and 

36 breaths per minute (bpm)) multiplied by 60.

E. Load Cell Respiration Rate (HAR)

The algorithm used to estimate the respiration rate using frequency domain techniques with 

HAR is outlined in the following steps, which returns respiration rate free of harmonics (i.e. 

RRHAR).

1. Signal conditioning. Implement steps 1–7 as described in section D.

2. Find 3 spectral peaks. Find, at most, the 3 frequency peaks in XCoPy with the 

largest power between 6 and 36 bpm to get, at most, 3 possible respiration rates 

(rr1, rr2, and rr3) and order the estimates so that rr3 is the highest and rr1 is the 

lowest rate. Each rr was required to be at least 0.01 times the power of the largest 

rr.

3. If one peak, return peak. If there is only one peak frequency leading to one estimate 

(i.e. rr1), return rr1 as the respiration rate estimate (i.e. RRHAR) for that window.
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4. If two peaks, and no harmonic, return most powerful peak, else return rr1. Test 

whether or not rr1 is a harmonic of rr2 (i.e. |rr2/2 – rr1| ≤ Δ) where Δ is set to 1 

bpm. If the harmonic condition is true, return rr1 as the respiration estimate. If the 

condition is untrue, return the respiration estimate (i.e. rr1 or rr2) with the 

corresponding frequency peak that has the most power.

5. If three peaks, use the following rules:

if 

RRHAR =  rr1 (5a)

else if 

RRHAR =  rr1 (5b)

else if 

RRHAR =  rr2 (5c)

else if 

RRHAR =  rr2 (5d)

else if 

RRHAR =  rr1 (5e)

else if 

RRHAR = max energy(rr2or rr1) (5f)

else

RRHAR = max energy (rr3 or rr2 or rr1) (5g)

The first three conditions above (5a–5c) account for the condition whereby there is 

one harmonic present and returns the lowest respiration rate that has a higher order 

harmonic. Condition 5d is when the second spectral peak is double the first and the 

third is double the second. In this case, it is not likely that the lowest spectral peak 

is a harmonic, because if it were, the largest peak would be 3 times its rate, not 4. 

Condition 5e is when the 2nd and 3rd highest frequency peaks are both harmonics of 

the lowest frequency peak. In this case, the lowest frequency peak is selected. 

Condition 5f occurs when the two lowest frequency peaks are close to each other 

and their harmonic is the third peak. The most powerful of the two lowest 

frequency peaks is selected in this case. And lastly, for condition 5g, if none of the 

peaks have a harmonic relationship, then the maximum energy peak is returned.
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6. Apply median filter. Filter the vector of estimated respiration rates (RRHAR) with a 

31 order median filter.

7. Select peak rr closest to median. On a point-by-point basis, refer back to the 3 

respiration rate estimates from step 2 (i.e. rr1, rr2, and rr3), and adjust the 

respiration rate estimates in RRHAR to be the estimate (rr1, rr2, or rr3) that is closest 

to the median filtered respiration rate estimate.

F. Compare Load Cell Respiration Rate Estimates with Ground Truth

The errors (E) between ground truth respiration rate estimates and those estimates found 

using the load cell data were estimated on a second-by-second basis using:

(3)

It should be mentioned that due to factors such as the removal of movement artifacts in the 

load cell data, there were not respiration rate estimates for every second in the two hour 

periods. Respiration rate estimates were only compared when there was a valid estimate for 

both the ground truth and the load cell derived estimate for a particular second.

III. RESULTS

The HAR algorithm worked well in removing higher order harmonics from the breathing 

signal and enabling a more accurate and robust estimate of respiration for those subjects 

who exhibited the harmonic phenomena. Fig. 2 shows the errors for the respiration rate 

estimation both without HAR (E1) and with HAR (E2).

Notice that for subjects 3 and 4, a higher order harmonic is present in the breathing signal. 

This harmonic leads to a non-Gaussian distribution of E1 that has a relatively larger 

variance. This harmonic is removed by the HAR algorithm. The effectiveness of the HAR 

algorithm is confirmed in Figs. 3 and 4. Notice in Fig. 3, which shows the error of the 

respiration rate estimation for a 2-hour period for subject 3, that there is a clear error caused 

by a harmonic. The distribution of the error is bi-modal. The bimodal error distribution is 

eliminated as shown in Fig. 4 when the HAR algorithm is applied.

IV. DISCUSSION

In this paper, we have demonstrated that selecting the largest amplitude spectral peak of a 

breathing signal estimated using load cells is not sufficient for obtaining an accurate 

estimate of respiration rate (Figs. 1, 2, 3). The HAR algorithm that we present herein is 

effective at identifying and removing harmonics from the breathing signal. This is evident 

especially for subjects 3 and 4 in Fig. 2. While respiration rate estimation for subjects 1, 2, 

and 5 appear to benefit little from HAR, subject 3 and 4 contain significant power at the 

respiration rate harmonic across the 2 hour period and accurate respiration rate estimation is 

only achieved with the HAR algorithm. The errors (E1) in Fig. 3 show that for subject 3 the 

harmonic is estimated almost as frequently as the actual respiration rate when no HAR is 

used. Once the HAR algorithm is applied, Fig. 4 shows how well we can track respiration 

Beattie et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rate using the CoPY load cell signals. In the future, we expect that being able to accurately 

track respiration across short time windows will enable more robust sleep apnea detection 

and potential identification of individual apnea events.
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Figure 1. 
Spectrogram that was estimated for 10 minutes of the load cell signal collected during 

subject 4’s overnight sleep test. The respiration rate estimates predicted from this frequency 

content are shown as yellow boxes when no harmonic correct was applied. A redline shows 

the load cell estimated respiration rate when harmonic correction was utilized. For 

comparison, the respiration rate ground truth estimates are indicated with the black line.
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Figure 2. 
(Upper) Errors for the respiration tracking algorithm without HAR. (Lower) Errors for the 

respiration tracking algorithm with HAR.
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Figure 3. 
(Upper) Respiration rate estimates using CoPY for subject 3 with no HAR are displayed as 

the green circles. Respiration rate ground truth is displayed as the black line. (Lower) 

Histogram illustrating the error (E1) between RRPSG and RRCoPy.
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Figure 4. 
(Upper) Respiration rate estimates using CoPY for subject 3 with HAR are displayed as the 

green circles. Respiration rate ground truth is displayed as the black line. (Lower) Histogram 

illustrating the error (E2) between RRPSG and RRHAR.
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