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Abstract— Respiratory rate (RR) is one of the most informa-
tive indicators of a patient’s health status. However, automated,
non-invasive measurements of RR are insufficiently robust for
use in clinical practice. A number of methods have been
described in the literature to estimate RR from both photo-
plethysmography (PPG) and electrocardiography (ECG) based
on three physiological modulations of respiration: amplitude
modulation (AM), frequency modulation (FM), and baseline
wander (BW). However, the quality of the respiratory informa-
tion acquired is highly patient-dependent and often too noisy
to be used. We address this by proposing respiratory quality
indices (RQIs) that quantify the quality of the respiratory signal
that can be extracted from each modulation from both PPG and
ECG waveforms. Signal quality indices (SQIs) detect artefact
in the ECG and PPG, which is relatively straight-forward.
RQIs have a different role: they quantify if an individual
patient’s physiology is modulating the sensor waveforms. We
have designed four RQIs based on Fourier transform (RQIFFT),
autocorrelation (RQIAC), autoregression (RQIAR), and Hjorth
complexity (RQIHC). We validated the approach using PPG
and ECG data in the CapnoBase and MIMIC II datasets. We
conclude that the novel implementation of an RQI-based pre-
processing step has the potential to improve substantially the
performance of RR estimation algorithms.

I. INTRODUCTION

Deviations in normal respiratory rate (RR) are one of the
most diagnostically useful indicators of a patient’s health
status [1]. There is an urgent clinical need for algorithms
that are capable of extracting RR from sensor waveforms
that are already collected in the hospital setting. Two of
these signals, the photoplethysmogram (PPG) and electrocar-
diogram (ECG), are ideal for such a purpose because they
are collected for almost every patient and are modulated by
respiration in multiple ways. RR can be estimated from both
PPG [2] and ECG [3] using amplitude modulation (AM),
frequency modulation (FM), and baseline wander (BW). One
challenge in using the AM, FM, and BW modulations is
that the quality and prevalence of each modulation is highly
patient-dependent. In particular, age, health status, level of
physical activity, and hydration level have all been shown to
have an effect on the quality of the respiratory signal that
can be derived [4]. This variability is a major source of error
for estimation algorithms which are not sufficiently robust
for use in clinical practice. There is currently no way to
determine the quality of the respiratory signal derived from
each modulation.
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A solution to this problem is to derive a pre-processing
algorithm that is capable of determining the presence of a
respiratory signal and the strength of that signal among the
noise components of the signal. This is a strategy that has
been widely employed on an array of physiological signals,
where the signal is assigned a signal quality index (SQI)
that indicates the presence of artefact in the signal [5].
However, using SQIs to disregard segments of waveform
that are known to be artefactual, and then using the non-
artefactual data for RR estimation, still results in insuffi-
ciently robust RR estimates. In this work, we propose a
novel pre-processing step, which we call respiratory quality
indices (RQIs). These are based on the Fourier transform,
autocorrelation, autoregression, and Hjorth complexity of
signals. Each RQI has been designed specifically to estimate
the quality of the respiratory modulation after it has been
extracted from either the PPG or ECG. The notion of RQIs
is distinct from SQIs because while the latter determine the
presence of artefacts in the signal, the RQIs quantify the
presence of the respiratory information in the AM, FM, or
BW signals that have been extracted from the PPG or ECG.

II. METHODS

A. Data Sets

Data were obtained for this analysis from two publicly-
available sources: CapnoBase [6] and MIMIC II [7]. Both
data sets contained simultaneous PPG and ECG data, and
either capnography or impedance plethysmography (IP) data,
which are used to obtain a “gold standard” RR estimate.

1) CapnoBase: This data set was collected from 59
pediatric (median age: 9, range 1-17 years) and 35 adult
(median age: 52, range: 26-76 years) patients undergoing
elective surgery or routine anasthesia [6]. We used the
data set described in [2], which contains one high-quality,
eight-minute segment with simultaneous PPG, ECG, and
capnography waveform data for each of 42 patients (29
pediatric and 13 adult). Expertly annotated breaths from the
capnography waveforms were used to define a reference RR
estimate when using our method with the PPG and ECG.

2) MIMIC II: This data set contains patient records for
over 25,000 patients in four ICU units: medical, surgical,
cardiac, and cardiac surgery [7]. For this analysis, only
records containing waveform data were used. This subset
consisted of 1017 adult patients (median age: 66, range: 18-
91 years). For consistency with CapnoBase, a single eight-
minute segment containing PPG, ECG, and IP (or the subset
of these when not all three signals were recorded) was
extracted between the 60th and 68th minute after recording



Fig. 1. Examples of the AM (red), FM (blue), and BW (green) respiratory
modulations of the PPG.

began for each patient. The 60 minute extraction delay en-
sured that any artefact that arose at the start of the monitoring
period was omitted. The IP was used to obtain a reference
RR estimate; however, since the IP waveforms were not
expertly annotated, in instances where the IP waveforms
were noisy, the reference estimate was likely to be wrong.
To overcome this, two benchmark RR estimation algorithms
(ARSpec [8] and an FFT-based algorithm [2]) were used to
assess the RR from the IP data. When the algorithms agreed
within ≤ 2 breaths/min, the estimates were averaged to give
the reference RR and when the algorithms differed by >
2 breaths/min, it was assumed that a reliable reference RR
could not be obtained, and the segment was not analysed.

B. Respiratory Waveform Extraction

Three respiration waveforms representing the three res-
piration modulations, AM, FM, and BW, were extracted
from the PPG (Figure 1) and ECG (Figure 2) using peak-
trough detection in the time domain [9]. The peaks are
represented as a series of pairs, (tpk, ypk,i)i...Npk

, as are
the troughs, (ttr,i, ytr,i)i...Ntr

. The respiratory amplitude
modulation (AM) is the height of the signal from the peak to
the corresponding trough, yAM = (tpk,i, ypk,i − ytr,i)i...Npk

,
where ti is taken to be the time of the peak pair. The
frequency modulation (FM) is the change in time interval
between peaks, yFM = (tpk,i, tpk,i+1 − tpk,i)i...Npk−1

. The
baseline wander (BW) is the envelope of the original sig-
nal, yBW = (tpk,i, ypk,i)i...Npk

. These modulations were
obtained for each 8-minute data sample by segmenting the
sample into 15 non-overlapping windows of 32s length. Each
modulation was extracted for every 32s window resulting
in 3 respiratory waveforms (AM, FM, and BW) for each
window of the original data. Each respiratory waveform was
then filtered with a 5th-order Butterworth IIR bandpass filter
between 0.83 and 1 Hz and subsequently downsampled to 4
Hz.

C. Respiratory Quality Indices

The RQIs were designed to determine if respiratory infor-
mation was contained in the AM, FM, and BW modulations
from the 32s segments of data. Because of the short time
window, it was assumed that the respiratory signal would
be stationary. From this assumption, four RQIs based on
the Fourier transform, autocorrelation, autoregression, and
Hjorth complexity were designed for each modulation signal.

Fig. 2. Examples of the AM (red), FM (blue), and BW (green) respiratory
modulations of the ECG.

1) Fast Fourier Transform RQI: The RQIFFT was derived
using the power spectrum of the FFT and was calculated as:

RQIFFT =

∑5
i=1 XPS(mi)∑1.0

m=0.1 XPS(m)

where,
∑1.0

m=0.1 XPS(m) is the sum of the power spectrum
within the physiologically relevant respiratory range from
0.1 to 1 Hz, and

∑5
i=1 XPS(mi) is the sum of the series

of the five largest, continuous points within the respiration
range where m1 is the first point and m5 the last point in
that five point sequence. Thus, the RQIFFT represents the
maximum frequency component, which is assumed to be the
respiratory frequency, divided by the sum of all the frequency
components within the physiologically relevant respiratory
range.

2) Autocorrelation RQI: The autocorrelation RQI
(RQIAC) was calculated by taking the autocorrelation of
each window defined as:

rk =
1

N−1

∑N−k
n=1 (x(n) − x̄) ∗ (x(n + k) − x̄)

c0

where rk is the autocorrelation value, c0 is the sample
variance, N is the total length of the sample, x̄ represents
the mean of the sample, and k represents the sample lag.
The autocorrelation was taken for every sample lag within
the possible respiratory range, 5 ≤ k ≤ 40 (0.1 to 1 Hz),
and the RQIAC was defined as the maximum autocorrelation
value within that range.

3) Autoregression RQI: The Autoregression RQI (RQIAR)
was found by taking the autoregression of each window using
the Yule-Walker equation for model orders m = 1. . . 30. The
ideal model order was selected using Akaike’s Information
Criterion (AIC) and the RQIAR was determined to be the
autoregression pole with the largest magnitude within a
frequency range from 0.083 to 1 Hz.

4) Hjorth Complexity RQI: The Hjorth Complexity RQI
(RQIHC) was found by calculating the third Hjorth Parameter,
“complexity,” which is a measure of the sinusoidality of a
signal, with the Hjorth Complexity of the perfect sinusoid
being 1 [10]. The RQIHC was taken to be the value of
the Hjorth Complexity, where better respiratory signals were
expected to have values closest to 1.

D. Evaluation and Comparison

The RQIs were evaluated by using the existing ARSpec
algorithm [8] to estimate RR for each of the three modu-



lations extracted from each window of PPG or ECG data.
The absolute difference in the respiratory estimate between
this and the reference RR estimate (from either capnography
or IP, depending on the data set) was taken as a proxy for
the quality of the respiratory information contained for a
particular modulation in a given window. Each RQI was
evaluated independently of this calculation and scaled such
that the RQI values expected to indicate the best quality res-
piratory information (i.e., the RR estimation that most closely
matched the reference RR value) were closest to 1 and the
worst were closest to 0. The performance of each RQI was
independently evaluated by sequentially calculating the mean
absolute error (MAE) and standard error (SE) of the absolute
difference of the estimate (from the existing ARSpec algo-
rithm) and reference estimate (from capnography or IP) as
the windows with the lowest RQI values were discarded. In
practice, the MAE and SE were calculated for the entire data
set (where every modulation and every window for each data
set were analysed independently), and then the windows with
the lowest RQI values were sequentially discarded, with the
MAE and SE being recalculated after each discarding step.
This process was repeated by discarding increments of 1%
of the data, from lowest-RQI windows to highest.

In addition to evaluating the RQIs against each other, the
performance of the RQIs was compared to an SQI defined in
[11]. This represents the current state-of-the-art, in which RR
estimation is performed on windows of data with high SQI
values. Prior to analysis, the SQI values were scaled using the
same method as the RQIs to allow for an identical analysis.
We also considered the “ideal” performance scenario, where
the MAE and SE are incrementally calculated when the
absolute difference of the ARSpec estimate and reference es-
timate is used to identify and discard the poorest performing
windows. This represents the best performance that could
be achieved if the reference is available. In practice, the
reference is unavailable-hence the need to estimate RR from
the PPG or ECG-data.

III. RESULTS

Overall, a total of 1890 windows (100% of possible
windows) were analysed for the CapnoBase PPG data, 1886
(99.8%) of CapnoBase ECG data, 32858 (71.8%) of MIMIC
II PPG data, and 35784 (78.2%) of MIMIC II ECG data.
Windows were discarded prior to analysis for three reasons:
(1) if, for the given window, either the reference waveform
(capnography or IP) or the PPG/ECG was not available or
did not contain usable data (i.e., a flat line signal): (2) if
a reliable reference RR could not be obtained (especially
relevant in the noisy MIMIC II data set); or (3) if the peak
and trough detectors detected ≤ 2 peaks/troughs, indicating
an unusable set of respiratory modulations for a window.

The performance of the RQIs can be best understood by
observing the change in the MAE as increasingly higher
quality data is retained while lower quality data is discarded.
Table I gives the difference of the MAE for 100% and
50% data retention (MAE100 − MAE50) and the standard
error of the difference of the MAE in breaths/min (br/min).

TABLE I
DIFFERENCE BETWEEN MAE100 AND MAE50

CapnoBase MIMIC II
PPG ECG PPG ECG

RQIFFT 4.17 ± 0.10 3.83 ± 0.12 3.49 ± 0.03 3.79 ± 0.03
RQIAC 4.33 ± 0.10 4.95 ± 0.11 3.09 ± 0.03 3.12 ± 0.03
RQIAR 3.49 ± 0.11 3.33 ± 0.12 2.36 ± 0.03 2.23 ± 0.03
RQIHC 3.02 ± 0.11 3.00 ± 0.12 3.32 ± 0.03 3.44 ± 0.03
SQI 0.47 ± 0.12 0.76 ± 0.13 0.93 ± 0.03 0.49 ± 0.03
Control 5.61 ± 0.07 7.14 ± 0.08 8.41 ± 0.02 9.20 ± 0.02

Fig. 3. RQI Performance on CapnoBase PPG data. Data were sequentially
discarded in 1% increments based on the quality of the respiratory data as
suggested by each individual RQI. The MAE was recalculated after each
discarding step. Each RQI, RQIFFT (red), RQIAC (green), RQIAR (blue), and
RQIHC (cyan), as well the SQI (pink) and the ideal (black), are represented.

Fig. 4. RQI Performance on CapnoBase ECG data. Legend as Figure 3.

The largest difference between MAE100 and MAE50 for
CapnoBase was seen when using RQIAC for both PPG
(4.33±0.10 br/min) and ECG (4.95±0.11 br/min). All RQIs
substantially improved on the performance of the SQI for
PPG (0.47±0.12 br/min) and ECG (0.76±0.13 br/min). Fur-
thermore, the best performing RQI for MIMIC II was RQIFFT
for both PPG (3.49±0.03 br/min) and ECG (3.79±0.03
br/min), and all RQIs outperformed the SQI for PPG
(0.93±0.03 br/min) and ECG (0.49±0.03 br/min).

The performance of each RQI at each 1% data discard
increment is shown in Figure 3 (CapnoBase PPG), Figure 4
(CapnoBase ECG), Figure 5 (MIMIC II PPG), and Figure
6 (MIMIC II ECG). These plots show a steady trend in
decreasing MAE for each RQI as the data with the poorest
performing RQI values are discarded. Furthermore, these
plots also indicate that each RQI outperforms the SQI
regardless of how much data is discarded.



Fig. 5. RQI Performance on MIMIC II PPG data. Legend as Figure 3.

Fig. 6. RQI Performance on MIMIC II ECG data. Legend as Figure 3.

IV. CONCLUSION

One of the biggest challenges in estimating RR from PPG
and ECG is ensuring the quality of the respiratory signal
from which the estimation will be made. In this work, the
goal was to address this challenge by proposing a novel pre-
processing step to each respiratory modulation (AM, FM,
and BW), termed a respiratory quality index. Four RQIs
were designed and validated based on the assumption that
for small timescales, the respiratory waveform is periodic.

The results from this analysis highlight a few key findings.
The first is the general usefulness of using RQIs. While
the RQIAC and RQIFFT outperformed the other two RQIs,
every RQI improved substantially on the ability of the SQI to
distinguish between high-quality and low-quality respiratory
signals. This suggests that the implementation of the RQI
pre-processing step promises to improve the accuracy of
RR estimation algorithms. Furthermore, improvements in the
MAE for even modest amounts of data discarded based on
RQI performance were seen. This indicates the robustness
gained by using RQIs, as they are not only capable of
distinguishing high-quality data from low-quality data as a
binary estimate, but provide a continuous scale as to the
quality of the respiratory data in each particular window.

Furthermore, the robustness of the RQIs extended to a
number of varied settings. First and foremost, each RQI
was applied to respiratory modulations obtained from both
PPG and ECG data and each RQI performed similarly well
on both. This suggests that the RQIs might be generally
applicable to any small-timescale respiratory waveform (e.g.,
when estimating RR from video). The RQIs also demon-
strated good performance as the data quality decreased.

This can be seen in the distinction of the CapnoBase and
MIMIC II data sets. The CapnoBase data set was obtained
under idealised circumstances for otherwise healthy patients
undergoing routine anesthesia or elective surgery; however,
the MIMIC II data set was collected on a much larger patient
cohort in four different ICUs. As a result, quality of the
MIMIC II data is much lower than that of the CapnoBase
as evidenced by the much larger amount of data discarded
prior to analysis and the higher MAE at 100% data retention.
While RQI performance decreased slightly when applied to
the MIMIC II data set compared to the CapnoBase data set,
it exhibited the same general trends and was still able to
effectively discard the poorest quality data.

The overall performance of each RQI vastly improved on
the performance of the SQI; however, further improvement
in the RQIs could be made by fusing each RQI into a
single metric. The fused RQI is expected to outperform each
individual RQI and obtain results more closely resembling
the performance of the “ideal” metric.
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