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Abstract— Classification of electroencephalography (EEG)-
based application is one of the important process for biomedical
engineering. Driver fatigue is a major case of traffic accidents
worldwide and considered as a significant problem in recent
decades. In this paper, a hybrid deep generic model (DGM)-
based support vector machine is proposed for accurate detection
of driver fatigue. Traditionally, a probabilistic DGM with deep
architecture is quite good at learning invariant features, but
it is not always optimal for classification due to its trainable
parameters are in the middle layer. Alternatively, Support
Vector Machine (SVM) itself is unable to learn complicated
invariance, but produces good decision surface when applied
to well-behaved features. Consolidating unsupervised high-level
feature extraction techniques, DGM and SVM classification
makes the integrated framework stronger and enhance mutu-
ally in feature extraction and classification. The experimental
results showed that the proposed DBN-based driver fatigue
monitoring system achieves better testing accuracy of 73.29
% with 91.10 % sensitivity and 55.48 % specificity. In short, the
proposed hybrid DGM-based SVM is an effective method for
the detection of driver fatigue in EEG.

I. INTRODUCTION

Fatigue is one of the key factor in road accidents for driver

in transportation [1]. Driver fatigue has been described as

a feeling of tiredness and reduced alertness when driving

which is associated with drowsiness, and which impairs

capability and willingness to perform the driving task [2].

The symptoms of driver fatigue include increased feelings

of tiredness, slower reaction time and lack of concentration

during driving and reduced control of speed of the vehicle

[3].

Recently, physiological measurement is considered one

of an effective measurement on driver fatigue. Electroen-

cephalography (EEG) [4], [5], electrooculography (EOG) [6],

and electrocardiography (ECG) [7] associated with fatigue

were investigated. EEG is considered to be a significant and

reliable method of detecting fatigue, as it directly measures

neurophysiological activity in the human brain [4]. Also,

EEG has been used frequently for sleep research [8]. Accord-

ingly, this paper explores strategies for improving the fatigue

classification in an EEG-based system by using advanced

computational intelligence.
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Recently, deep belief networks (DBNs) have been suc-

cessfully applied in various domains, raining from image

classification [9], speech recognition, audio classification

[10] [11] to natural language processing [12]. Besides the

successful stories of image and speech recognition, these

approaches have been introduced in physiological signals

such as electromyogram (EMG), electrocardiogram (ECG),

electroencephalogram (EEG) signals [13] due to their merits

in high-level feature representation and better classification

performance. In all the above mentioned applications, the

deep learning models employed feed-forward neural net-

work (FFNN) model as well as softmax activation function

(also known as multinomial logistic regression) for final

fine-tuning and classifications. As an alternative to deep

framework with neural network structure, support vector

machine (SVM) has been introduced to train on high-level

features extracted by the final layer of restricted boltzmann

machine (RBM) [14]. In particular, deep structure of RBM

are trained to learn good invariant hidden layer representation

while the corresponding hidden variables of data samples

are treated as inputs to SVM. This recent surge of activities

are largely spurred its use in the detection of premature

ventricular contraction (PVC) in ECG signal. To the best of

our knowledge, the deep learning framework have not been

applied yet.

In this paper, considering high-dimensional, non-linear

nature of EEG data, a hybrid deep generic model-based

SVM (DGM-SVM) classifier is developed for driver fatigue

detection. The inputs in this strategy are raw high dimen-

sional EEG data while the output represent fatigue or non-

fatigue status. With the proposed integrated system, high-

level EEG features are preliminarily extracted through the

layer-wise training of deep hicherical RBM, followed by

SVM for classification on the features extracted by RBM.

Consolidating the unsupervised feature extraction and SVM

classification which makes the integrated frame work to

stronger and mutually enhances both features extraction and

classification process.

The organization of this paper is as follows: in Section II,

an integrated framework, deep generic model-based SVM

and its application in EEG-based driver fatigue detection is

introduced. To show the effectiveness of our proposed meth-

ods, the experimental analysis are compared and analyzed in

Section III before a conclusion is drawn in Section IV.



II. METHODS

A. EEG-based fatigue monitoring

The system block diagram of the driver fatigue monitor-

ing/classification is shown in Fig. 1. The process begun with

the EEG data collection of the driving fatigue study using

the driving simulation software. The raw EEG signal which

contaminated with the artifacts such as ocular, muscular

and heart activities are removed. The cleaned EEG data is

fed into the next process which is the segmentation with

certain duration of windows. After the segmentation, the

cleaned raw EEG data is directly feed to the hybrid DGM-

based SVM system without the process of feature extraction.

In the proposed driver fatigue detection system in Fig. 1,

the DGM is used to extract high-level features while SVM

is used final classification. Integrating unsupervised feature

extraction and SVM classification makes the proposed hybrid

frame work stronger and improve the performances in both

feature extraction and classification. For comparison purpose,
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Fig. 1. System block diagram of driver fatigue monitoring system

the standard feature extraction process using power spectrum

density (PSD) is introduced and the features extracted by

DGM as well as PSD are analyzed in order to see the effec-

tiveness of proposed method in fatigue monitoring system.

B. Hybrid Deep Generic Model with Support Vector Ma-

chine (DGM-SVM)

In this paper, an integrated framework which uses deep

generic model and SVM is proposed. In general, a prob-

abilistic generative model with deep architecture is quite

good at learning invariant features, but not always optimal

for classification since most of the trainable parameters

are in the middle layer [15]. On the other hand, SVM

itself is unable to learn complicated invariance, while it

achieves good decision surfaces on well-behaved features.

To overcome individual limitations of DBN and SVM, an

integrated system in Fig. 2 is proposed. In the proposed

system, a deep generic model is initially constructed by

stacking predefined number of restricted boltzmann machines

(RBM). In each RBM (for example RBM1 in Fig. 2), it

consists of visible m visible neuron (v = (v1, . . . ,vm)) and n

hidden neurons (h = (h1, . . . ,hn)). They are fully connected

via symmetric undirected weights wi j. With the weights and

biases, the energy of a joint configuration between hidden

and visible neurons, E(v,h) is defined as [16]:

E(v,h) =−
n

∑
i=1

m

∑
j=1
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m

∑
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Fig. 2. Hybrid Deep Generic Model-based SVM System (DGM-SVM)

where wi j is associated weight between v j and hi for all

i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}; b j and ci are bias terms

associated with the jth and ith visible and hidden neurons.

Through the energy function in (1), for all possible pair of

visible (v)-hidden (h) neurons, the networks assigns a joint

probability distribution as follows:

p(v,h) =
e−E(v,h)

Z
(2)

where Z = ∑
v,h

e−E(v,h) is the normalized term which is ob-

tained by summing over the energy of all possible (v,h)
configurations. Through the gradient of log probability of

a visible vector (v) over the weight wi j, the updated rule

is calculated by constructive divergence (CD) algorithm as

follows:

∆wi j = γ
(〈

v jhi

〉

data
−
〈

v jhi

〉

recon

)

(3)

where γ is the learning rate, v and h are visible and hidden

units,
〈

v jhi

〉

recon
is the reconstruction of original visible units

which is calculated by setting the visible unit to random

training vector. Due to the constraints in hidden to hidden

connections and visible to visible connections, the binary

state of hidden unit and visible unit are considered as follows:

p(hi = 1|v) = σ

(

m

∑
j=1

wi jv j + ci

)

(4)

p(v j = 1|h) = σ

(

n

∑
j=1

wi jhi +b j

)

(5)

where σ is the logistic sigmoid function and computed as

σ (x) = 1
/

(1+ exp(−x)).



The joint distribution between visible layer and L hidden

layer is modeled by:

P(v,h1
, . . . ,hL) =

(

L−2

∏
k=0

P(hk|hk+1)

)

P(hL−1
,hL) (6)

where v = h0, p
(

hk−1|hk
)

is a conditional distribution for

the visible units conditioned on the hidden units of the

RBM at level k, and P(hL−1,hL) is the visible-hidden joint

distribution in the top-level RBM. In order to extract a

deep hierarchical features of the input (training) data, the

DBN is trained in a greedy layer-wise manner. During the

training, each RBM are applied recursively with the features

activations by one RBM and represented as the data for

training the next RBM in the stack. With the use of optimized

bottom up recognition weights of deep hierarchical models,

high-level feature set (u) is extracted by:

u =W × v, W = [W 1
,W 2

, . . . ,W L] (7)

Once the high-level features are extracted, it is integrated to

SVM to work as a final classifier. The integrated system in

Fig. 2 is quite appealing because feature extraction process is

introduced and integrated in a regular SVM kernel (K(u,ui))
[17]. Finally, the output of DGM-SVM, f (x) is calculated

by:

f (x) = sgn(∑
i

yiαiK(u,ui)+b) (8)

where sgn is a signum function, K(u,ui) is a polynomial

kernel function which measures the similarity between input

pattern u and the training sample ui, α is the weight

parameter for each corresponding input hi. The output f (x)
computes the discriminant function as a liner combination of

the similarity scores with learned weights αi. In this clinical

application, the output of DGM-SVM f (x) is calculated by

(8) and it is defined as positive (fatigue state) when the f (x)
is greater than 0. It can be presented as:

y =

{

+1, f (x)≥ 0

−1, f (x)< 0 .
(9)

C. Performance Measurement

To determine the performance of proposed detection sys-

tem, sensitivity, specificity, and accuracy are introduced [18]:

Sen(ξ ) =
NT P

NT P +NFN

(10)

Spec(η) =
NT N

NT N +NFP

(11)

Acc(α) =
NT P +NT N

NT P +NT N +NFP +NFN

(12)

where NT P is defined as number of true positive, NFN is

number of false negative, NFP is number of false positive,

and NT N is number of true negative. The values of these

are within 0 to 1. In clinical study, the accuracy of a

given classifier is important because it mainly represents the

performance of classifier. The higher accuracy represents the

better performance proposed detection system.

III. RESULT AND DISCUSSION

In this study, the EEG data from previous study [4] was

used which contains of 5 healthy participants aged between

18 and 55 years for driving simulator task using the divided

attention steering simulator. During the driving experiment,

participants were asked to drive at the center. This driving

experiment was stopped with conditions as follows: (i) if

signs of fatigue were detected; (ii) if there were off the road

driving detected for more than 15 seconds; (iii) if maximum

time of 2 hours has been reached.

During this experiment, EEG brain signals were recorded

with 32-channels based on the International 10-20 system

attached to the head. These 32-EEG channels location are:

FP1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3,

PZ, PO3, O1, OZ, O2, PO4, P4, P8, CP6, CP2, C4, T8,

FC6, FC2, F4, F8, AF4, FP2, FZ and CZ with sampling rate

of 256 Hz. The EEG recorded signals is shown in Fig. 3.

Fig. 3. Section of recorded EEG brain signal

The artifacts were removed from the raw EEG dataset

using the second order blind identification (SOBI) and canon-

ical correlation [19]. This is continued by dividing the data

into alert and fatigue groups. The first 5 minutes of the

data when starting the driving experiment was used for alert

ground. For the fatigue group, it used from the last 5 minutes

of the data before the experiment was stopped. In each group

of data, 20s duration of segment for each state (fatigue and

alert states) that had least artefacts was used for further

analysis.

A moving window of 2 seconds with overlapping of

quarter of seconds was applied to 20 seconds segment which

resulted of 73 units of overlapping data. With the total of 5

participants, it resulted of 365 units of dataset for fatigue

state and another 365 units for alert state or 730 units for

combined dataset. The dataset was divided into training set

which taken from 3 participants or 438 units of dataset and

testing set from 2 participants or 292 units of dataset. The

training set was trained by DBN without needing any feature

extraction process and it can be observed that the DBN is

able to handle high dimensional un-processed raw EEG data.

To evaluate the effectiveness of proposed method, com-

parison studies between deep generic model-based SVM

(DGM-SVM) and power spectrum density features-based



SVM (PSD-SVM) are performed and analyzed in Table I.

In this experiment, a single layer RBM is good enough for

high-level features representation. With the use of trial-error

method, the trained RBM with 23 hidden neurons achieve

better classification accuracy. During unsupervised training

of RBM, the hidden layer is initialized randomly and updated

using (3) with learning rate (γ) of 0.01 until 500 epoches.

As the optimal weights between visible and hidden layers

are learned, the reconstruction and the input samples become

closer and high-level useful features are obtained.

After the training process, the optimized DGM-SVM

achieved improved testing accuracy of 73.29 % with 91.10

% (Sensitivity) and 55.48 % (Specificity) while PSD features

itself gives 61.00 %, 70.00 %, 52.00 % of accuracy, sensi-

tivity and specificity. Based on the optimized RBM hidden

neurons, there are 23 features extracted by DGM while

121 features are extracted by PSD. It can be seen that the

proposed DGM-SVM can effectively perform in detection of

driver fatigue with high-level features extracted by DGM.

TABLE I

COMPARISONS STUDIES: BEST TESTING RESULTS

METHOD Sensitivity(%) Specificity(%) Accuracy(%)

PSD-SVM 70.00 52.00 61.00

DGM-SVM 91.10 55.48 73.29

Finally, the optimized DGM network structure is con-

structed by 32 units of input layer (i.e, 32 EEG channels),

23 units of hidden RBM layer and 1 output units of final

SVM layer. Since the architecture of network, especially the

size of RBM can greatly influence the performance, it is

vital to carefully select the number of hidden RBM units

and/or layers. There is trade-off between too many and too

less number of hidden neurons and/or layers. To the best of

knowledge, there is no special techniques proposed for the

selection of optimal network parameters.

IV. CONCLUSIONS

In this paper, by the use of 32 EEG channels, a hybrid deep

generic model (DGM)-based SVM is developed for detection

of driver fatigue. With the proposed integrated framework,

the most abstract features are generated through the layer-

wise training of RBM deep architectures and applied to

SVM for the best classification performances. By fusing

the unsupervised feature extraction and SVM classification,

the integrated framework becomes stronger and enhances

the performance of feature extraction and classification.

To evaluate the effectiveness of proposed method, several

experiments are conducted and analyzed. With the use of

proposed method, the improvement in accuracy, sensitivity

and specificity is satisfactorily found. It means that the DGM

is useful for extracting high-level features and improved the

performance of driver fatigue detection system. In short, the

proposed hybrid DGM-based SVM driver fatigue detection

system can effectively detect the normal and fatigue stages

through analysis of large variation of drivers’ EEG signal.
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