Abstract:
Personal and wearable computing are moving toward smaller and more seamless devices. We explore how this trend could be mirrored in an authentication scheme based on elec...Show MoreMetadata
Abstract:
Personal and wearable computing are moving toward smaller and more seamless devices. We explore how this trend could be mirrored in an authentication scheme based on electroencephalography (EEG) signals collected from the ear. We evaluate this model using a low cost, single-channel, consumer grade device for data collection. Using data from 12 study participants who performed a set of 5 mental tasks, we achieve a 44% reduction in half total error rate (HTER) compared with a random classifier, corresponding to a 72% authentication accuracy in within-participants analyses and a 60% reduction and 80% accuracy in between-participant analyses. Given our results and those of previous research, we conclude that earEEG shows potential as a uniquely convenient authentication method as it is integrable into devices like earbud headphones already commonly worn in the ear, and the mental gestures generating the signal are invisible to would-be eavesdroppers.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28268717