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Abstract— The Cluster-Span Threshold (CST) is a recently
introduced unbiased threshold for functional connectivity net-
works. This binarisation technique offers a natural trade-off
of sparsity and density of information by balancing the ratio
of closed to open triples in the network topology. Here we
present findings comparing it with the Union of Shortest Paths
(USP), another recently proposed objective method. We analyse
standard network metrics of binarised networks for sensitivity
to clinical Alzheimer’s disease in the Beta band of Electroen-
cephalogram activity. We find that the CST outperforms the
USP, as well as subjective thresholds based on fixing the network
density, as a sensitive threshold for distinguishing differences in
the functional connectivity between Alzheimer’s disease patients
and control. This study provides the first evidence of the
usefulness of the CST for clinical research purposes.

I. INTRODUCTION

Network science applies graph theory to real world prob-
lems in order to understand the interdependencies of complex
systems [1]. It is widely used in the analysis of functional
brain recordings where brain regions show statistical depen-
dencies in a highly complex topological manner, bringing
many different functions into one seamless experience for
the subject [2][3][4].

In Alzheimer’s disease (AD) it is held that the break-
down of these interactions, through the aggregation of toxic
plaques, leads to noticeable functional differences which
can be captured by the Electroencephalogram (EEG) using
topological information of the network created from pair-
wise connectivity information of the EEG channels [5].
However, this process results in a complete weighted network
where an edge between every two nodes in the network is
weighted as the output of the corresponding connectivity
measure, which is likely to contain many spurious low
weights between largely independent channels [3].

To counter this problem, binarisation of the edges is
proposed to offer an equalised form of the important infor-
mation in the network whilst rejecting many of the spurious
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connections. This also allows for the use of binary metrics
which are simpler to use than weighted metrics [6]. However,
the lack of objective methods for binarisation results in
arbitrary choices made in studies leading to different and
sometimes conflicting results [7].

Novel solutions for network binarisation are thus forth-
coming to solve this problem. Recently, Smith et al. [8] pro-
posed the Cluster-Span Threshold (CST) based on selecting
the threshold of the network that results in a balance of open
to closed triples in the graph, ensuring a trade-off of sparsity
and density of information. It was compared favourably with
the Minimum Spanning Tree (MST), another binarisation so-
Iution which had previously been implemented successfully
in a number of studies [9][10]. The MST results in a very
sparse network, which gives robustness to fluctuations in the
edge weights but it was noted that this also results in a
poverty of connectivity information which appeared to be
insensitive to more subtle cognitive differences [8]. Further,
in general, the MST requires the rejection of some very
strong edges because their inclusion would create cycles in
the network and thus disqualify it as a tree.

The Union of Shortest Paths (USP) is another approach
which overcomes this issue of edge rejection by focusing on
the union of edges constituting the shortest paths between all
pairs of nodes in the network [11]. It ensures connectedness
(a path necessarily exists from every node to every other)
and allows for higher connection density than the MST
as it accepts cycles. Thus it initially seems a promising
binarisation method.

In this study we compare the CST with the USP and pro-
portional thresholds on clinical data of Alzheimer’s disease
patients against healthy control to contrast these techniques
and assess their viability in the clinical setting.

II. MATERIALS
A. Subjects

The EEG recordings used here were taken from 12 AD
patients and 11 healthy control subjects. The patients -5 men
and 7 women; age = 72.8 + 8.0 years, mean =+ standard
deviation (SD)- were recruited from the Alzheimers Patients
Relatives Association of Valladolid (AFAVA). They all ful-
filled the criteria for probable AD. EEG activity was recorded
at the University Hospital of Valladolid (Spain) after the
patients had undergone clinical evaluation including clinical
history, neurological and physical examinations, brain scans



and a Mini Mental State Examination (MMSE) to assess their
cognitive ability [12].

The mean MMSE score for the AD group was 13.3 +
5.6 points (mean *+ SD), indicating moderate disease on
average, however five of the patients had a score below
12 points, indicating severe dementia. Two of the patients
were undergoing lorapezam treatment which may enhance
beta activity with therapeutic doses, although no prominent
rapid rhythms were observed in the visual inspection of their
EEG recordings. No other patients were taking medication
reported to influence EEG activity.

The 11 age-matched, elderly subjects who made up the
control group- 7 men and 4 women; 72.8 + 6.1 years +
SD- did not have any past or present mental disorder. They
all scored 30 on the MMSE. The local ethics committee
approved the study and control subjects and all caregivers
of the patients gave their informed consent for participation
[13].

B. EEG Recordings

The EEG recordings were made using Profile Study Room
2.3.411 EEG equipment (Oxford Instruments) at electrodes
F3, F4, F7, F8, Fpl, Fp2, T3, T4, TS5, T6, C3, C4, P3, P4,
01, 02, Fz, Cz and Pz, in accordance with the international
10-20 system. More than 5 minutes of data were recorded
for each subject. Subjects were asked to remain in a relaxed
awakened state with eyes closed while the recording process
was taking place. Sampling was performed at 256 Hz, with
12 bit A-to-D precision.

Recordings were visually inspected by a specialist physi-
cian who selected epochs with minimal artefactual activity
of 5s (1280 points) from the data for further analysis. The
average number of these epochs per electrode per subject
was 28.8+ 15.5 (mean + SD).

The data were then written to ASCII files and the selected
epochs were digitally filtered with a bandpass filter from 0.5-
40 Hz before analysis [13].

III. METHODS
A. Pre-Processing

We closely followed the procedure undergone in the in-
troductory study of the CST [8]. All network pre-processing
was performed using FieldTrip [14]. For each epoch, the
16 channels were first re-referenced to the grand average.
The muli-taper method was applied using a Hanning win-
dow where the 5s recordings provided a 0.2 Hz frequency
resolution. We then applied the debiased weighted phase-lag
index [15] to the S (12.2-32 Hz) frequencies and averaged
over frequency to obtain one connectivity matrix per trial for
(. These connectivity matrices were further averaged over
epochs [16] to obtain one matrix per person. Only one trial
was available for one of the healthy control subjects and only
2 trials for another. These data sets are thus too small for
reliable connectivity information and had to be disregarded
for this study. In the end, we have a group of 12 AD patients
and 9 healthy control subjects.

B. Network Binarisation

Before outlining the binarisation techniques we wish to
compare, it is necessary to cover the graph theory on which
their foundations are based. Let G = (V,£,A) be an
undirected graph, where V is the vertex set with [V| =n, £
is the edge set consisting of ordered pairs of elements from V
with |E] = 2m, and A is a weighted adjacency matrix such
that the ith row, j column entry of A, A;;, is the weight
of edge (i,7) € £ We then look for methods to transform
the weighted graphs obtained from connectivity measures
into corresponding simple graphs, which are unweighted,
undirected and with no multiple edges or self-loops [1]. For
an example of how the networks look like after implementing
the binarisation techniques, see Fig.2.

1) CST: The CST computes an extensive list of pro-
portional thresholds and chooses the one for which the
proportion of open triples to closed triples is balanced.
This balance occurs exactly where the global clustering co-
efficient, Cyop, Obtains the value 0.5, i.e. when

_ (A%
Colob = Z =T, 0.5,

where

T =A% —Dj,e

is the matrix of triples between nodes so that T;; is the
number of triples starting at node ¢ and ending at node j.
D2 here is the matrix consisting of the diagonal entries of
AZ? on the diagonal and zeros elsewhere, thus T is just A2
with diagonal entries set to 0.

In application the ratio of open to closed triples is un-
likely to balance exactly because graphs are discrete objects.
Therefore, as in [8], we take the CST as the proportional
threshold at which the closest value of Cgp is 0.5 for any
given network.

2) USP: The union of shortest paths uses Dijkstra’s
algorithm [17] for finding the shortest path between two
nodes and then takes the unweighted edges constituting those
paths for all nodes as the network [11]. This guarantees con-
nectedness of the network since all nodes must be connected
to all others.

However, connectivity information is inverse to distance
since, for connectivity, the stronger the connection is the
higher is the weight, whereas with distance the stronger
the connection (i.e. the shorter the distance) the smaller the
weight. Before finding the USP one must first transform
the weights accordingly [11]. Further, if the weights are
too similiar, the shortest paths between two nodes will
mostly consist of the edge adjacent to both nodes, which
would result in an almost complete graph where the only
relevant information of the network would be related to the
weakest connections, which are already seen to be spurious.
Therefore, to attempt to avoid these issues we take the
negative log of the weights divided by a suitably chosen
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Fig. 1. Histogram of the transformed edge weights, 1;, for all subjects in
the study. This shows a roughly normal distribution which has much wider
spread than the power law distribution of the original weights (inset).

upper bound. That is, we use weights w;; where

0, i—
wij =4 —log(wi;) . , .
— 0 tFD

and compute the shortest paths between these transformed
weights. To find o we simply computed the negative log of
all weights and looked for the next integer number greater
than the maximum value, which was 14 in this instance. A
histogram of the transformed weights in this study is shown
in Fig.1, which shows how the weights with a roughly power
law distribution (inset Fig.1) have been transformed into a
more spread, roughly normal distribution.

3) Proportional thresholds: To compare these binarisation
methods with a widely utilised standard, we choose arbitrary
proportional thresholds at 20%, 30% and 40%, similarly as
in [8]. This simply keeps the given percentage number of
strongest weights and uses those as the unweighted edges
for the network.

C. Network Metrics

We computed the local clustering coefficient, Cj,c, and
the degree variance, V, for the CST, 20%, 30% and 40%
threshold binarised networks and USPs.

Cloc is different to Cgiqp in that it computes the mean of the
clustering coefficients centred at every node [1]. What this
means is that, for a node, ¢, one computes the percentage of
triples centred at ¢ which are triangles and averages this value
over all nodes. This is different from just the percentage of
triples which are triangles as in Cyjob, thus one can use this
as a measure for CST networks and, indeed, this difference
could extract interesting differences in the underlying data.
Cloc 1s one of the most widely used network measures and
has been utilised in many AD studies [7].

The degree variance, V/, is the variance of the degrees
of the graph, where the degree of node 7 is the number
of adjacent connections to 7. This measures the topological
heterogeneity of the degrees [18] and is thus relevant to the
scale-freeness of network topology [19].

Control Example - CST AD Example - CST

Control Example - 40% Threshold AD Example - 40% Threshold

Control Example - USP AD Example - USP

Fig. 2. Basic network representation of EEG activity of one healthy control
subject, left, and one Alzheimer’s disease patient, right, for Cluster-Span
Threshold (CST), 40 % proportional threshold and Union of Shortest Paths
(USP). Nodes correspond to a top view of the rough layout of electrodes
on the 10-20 system- top to bottom is front to back of the head.

We computed these measures using the Brain Connectivity
Toolbox [20] and simple computations in MATLAB.

IV. RESULTS AND DISCUSSION

The average connection density for the CST networks in
this analysis was 45.6345.23% (mean =+ standard deviation).
This mean breaks down into 47.50 4 3.48% for Alzheimer’s
patients and 43.15+6.29% for healthy control. This indicates
that the Alzheimer’s networks appear to be more random
than healthy control networks since random networks have
connection density = Cglop = 0.5 [1]. This is in agreement
with the findings in [6]. For the USP networks the average
connection density was 94.40+4.35%. This is still very high.
However, it must be stressed that methods to counter this in
the weight transformation should not involve variable param-
eters as this would introduce a similar arbitrary parameter
that the USP is introduced to avoid. This breaks down into
94.58 + 4.37% for Alzheimer’s patients and 94.17 + 4.56%
for healthy control.

Results of student t-tests for AD vs. Control for the
network metrics of the different binarisation approaches are
shown in Table I. The box plots of these results are found
in Fig.3. We see that the CST shows significance with Clo.
alongside the 40% threshold at the standard p < 0.05 level.
No other significant differences are found, particularly the
USP appears far the least sensitive for finding differences
in topology between AD and control. However, the degree
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Fig. 3. Box plots of metric values: AD vs. healthy Control for local cluster-
ing coefficient and degree variance as indicated. The arbitrary proportional
thresholds are denoted by "#T° for the #% threshold.

variance for the CST does appear to exhibit some sensitivity
(p = 0.0899) in contrast with V' for the other approaches.

For the USP, the connection density is too large as it
stands. Particularly, having such large densities means that
the topology being studied by the USP relates to the weakest
connections in the network rather than the strongest ones.
Thus, though based on a theoretically sound idea, we advise
that it is not useful for functional connectivity where the
weights of the edges tend to have similar magnitudes.

The box plots show that local network clustering appears
to be lower for AD than for controls at higher densities of
network binarisation of EEG /3 activity. This may correspond
to less organised brain connectivity.

TABLE I
THE p-VALUES FROM TOPOLOGICAL METRICS FOR t-TESTS OF AD
PATIENTS VS. HEALTHY CONTROL.

Metric CST 40% 30% 20% USP
C 0.0260 || 0.0282 || 0.1519 || 0.2892 || 0.7203
|4 0.0899 || 0.3052 || 0.4175 || 0.2649 || 0.5388

V. CONCLUSIONS

We presented a comparison of novel network binarisation
techniques to negate the problem of biased subjective thresh-
olding in brain network research on clinical EEG data of
Alzheimer’s patients vs healthy control. We found further
evidence that the CST provides a sensitive framework for
functional brain network analysis, this time providing clinical
evidence that resting-state functional connectivity of beta in

Alzheimer’s diseased brains is more random than in healthy
brain activity. The USP was found to not be as appropriate
in this setting from both the theory and in application. In
the future we aim to provide a comprehensive evaluation of
the CST using both simulated and real brain networks. We
will provide an extensive comparison with the USP, MST,
arbitrary thresholds (including higher density thresholds) and
also with weighted metrics to ascertain in which scenarios
each of these may be more powerful and appropriate.

REFERENCES

[11 M.E.J. Newman, “Networks”, Oxford University Press, Oxford, 2010.

[2] E. Bullmore, O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems”, Nature Neuroscience,
10:186-198, 2009.

[3] F.Fallani, J. Richiardi, M. Chavez, S. Achard, “Graph analysis of func-
tional brain networks: practical issues in translational neuroscience”,
Phil Trans. R Soc. B, 369(1653): 20130521, 2014.

[4] D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, J.M. Buldd,
“Functional brain networks: great expectations, hard times, and the
big leap forward”, Phil. Trans. R Soc. B, 369(1653): 20130525, 2014.

[5] C.J. Stam, B.E. Jones, G. Nolte, M. Breakspear, P. Scheltens, “Small
World Networks and Functional Connectivity in Alzheimers Disease”,
Cerebral Cortex, 17:92-99, doi:10.1093/cercor/bhj127, 2007.

[6] C.J. Stam, “Modern network science of neurological disorders”, Na-
ture Reviews Neuroscience, 15: 683695, doi:10.1038/nrn3801, 2014.

[7]1 B. Tijms et al., “Alzheimer’s disease: connecting findings from graph
theoretical studies of brain networks ”, Neurobiology of Aging, 34:
2023-2036, 2013.

[8] K. Smith, H. Azami, M.A. Parra, J.M. Starr & J. Escudero, ““ Cluster-
Span Threshold: An unbiased threshold for binarising weighted com-
plete networks in functional connectivity analysis”, IEEE Engineering
in Medicine and Biology Society Conference, 2840-2843, 2015.

[9] P. Tewarie et al., “The minimum spanning tree: an unbiased method
for brain network analysis ”, Neuroimage, 104: 177-188, 2015.

[10] C.J. Stam, P.Tewarie, E. Van Dellen, E.C.W.vanStraaten, A. Hille-
brand, P. Van Mieghem, “The Trees and the Forest: Characterization of
complex brain networks with minimum spanning trees”, International
Journal of Psychophysiology, 92: 129-138,2014.

[11] J. Meier, P. Tewarie & P. Van Mieghem, “The Union of Shortest Path
Trees of Functional Brain Networks”, Brain Connectivity, 5(9): 575-
581. doi:10.1089/brain.2014.0330, Nov. 2015.

[12] M.F. Folstein, S.E. Folstein and PR. McHugh, “Mini-mental state: a
practical method for grading the cognitive state of patients for the
clinician”, J. Psychiatr. Res., 12: 189198, 1975.

[13] J. Escudero, D. Abdsolo, R. Hornero, P. Espino & M. Lépez, “Analysis
of electroencephalograms in Alzheimer’s disease patients with multi-
scale entropy”, Physiological Measurement, 27(11): 1091-1106, Sept.
2006.

[14] R. Oostenveld, P. Fries, E. Maris and J-M. Schoffelen, “FieldTrip:
Open Source Software for Advanced Analysis of MEG, EEG, and
Invasive Electrophysiological Data”, Computational Intelligence and
Neuroscience, Volume 2011, 156869, 9 pages, 2011.

[15] M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, C.M.A.
Pennartz, “An improved index of phase-synchronization for electro-
physiological data in the presence of volume-conduction, noise and
sample-size bias”, Neurolmage, 55:1548-1565, 2011.

[16] E. van Diessen, T. Numan, E. van Dellen, A.W. van der Kooi, M.
Boersma, D. Hofman, R. van Lutterveld, B.W. van Dijk, E.C.W. van
Straaten, A. Hillebrand, C.J. Stam, “Opportunities and methodological
challenges in EEG and MEG resting state functional brain network re-
search”, Clinical Neurophysiology, doi:10.1016/j.clinph.2014.11.018,
2014.

[17] E.W. Dijkstra, “A note on two problems in connexion with graphs”,
Numerische Mathematik, 1(1):269-271, 1959.

[18] T.A.B. Snijders, “The degree variance: an index of graph heterogene-
ity”, Social Networks, 3(3): 163-174, 1981.

[19] V.M. Eguluz, D.R. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian,
“Scale-Free Brain Functional Networks”, Phys. Rev. Lett, 9: 018102,
Jan. 2005.

[20] M. Rubinov, O. Sporns, “Complex network measures of brain connec-
tivity: Uses and interpretations”, Neurolmage, 52:1059-1069, 2010.



