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Abstract

Response to prescribed analgesic drugs varies between individuals, and choosing the right drug/

dose often involves a lengthy, iterative process of trial and error. Furthermore, a significant portion 

of patients experience adverse events such as post-operative urinary retention (POUR) during 

inpatient management of acute postoperative pain.

To better forecast analgesic responses, we compared conventional machine learning methods with 

modern neural network architectures to gauge their effectiveness at forecasting temporal patterns 

of postoperative pain and analgesic use, as well as predicting the risk of POUR. Our results 

indicate that simpler machine learning approaches might offer superior results; however, all of 

these techniques may play a promising role for developing smarter post-operative pain 

management strategies.

I. Introduction

Worldwide over 100 million people undergo surgery each year, and over 60% of these 

patients will suffer from uncontrolled postoperative pain [1]. Apart from the imparted 

suffering, poor management of postoperative pain can lead to a host of postoperative 

complications ranging from urinary retention, nausea, and vomiting to addiction, respiratory 

insufficiency and even cardiovascular collapse. Inadequate postoperative pain management 

stems from a range of factors, but chief amongst them is a lack of an analytical mechanism 

for matching patient-specific predictions and observations on postoperative pain with 

optimal analgesic selection to prevent or satisfactorily ameliorate the anticipated suffering 

and complications [2]. Modern “deep learning” research has demonstrated the power of 

neural networks to solve many real-world problems [3]. They may also offer a new 

perspective into surgerys most primordial limitation by forecasting pain, analgesic 

requirements and the consequences.
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Neural networks are a class of biologically-inspired artificial intelligence techniques that 

attempt to algorithmically model our current understanding of neurons. A linear 

combination of inputs is passed through a nonlinear activation function in a single layer, and 

this can be repeated using multiple layers until terminating at a loss function. Parameters are 

trained via gradient descent and differentiation using the chain rule from calculus, a 

procedure called “backpropagation”.

Neural network architectures are attractive because they demonstrate an ability to learn 

salient features of the data on their own as well as solve very complex problems. We 

explored two neural network architectures to gauge their effectiveness at addressing some 

issues relevant to postoperative pain management, namely, assessing the risk of Post-

operative urinary retention (POUR) and pain prediction.

POUR is a common occurrence after anesthesia [4]. To assess the risk of POUR, we built a 

classification neural network, called a multi-layer perceptron (MLP), which relies on stacked 

neural network layers and outputs a probability estimate for risk of complication. While 

MLP’s have been around for many years, we utilized modern strategies to improve the 

MLP-regularization, which sets an upper limit on neuron weight vector norms similar to 

ridge regression [5], and helps prevent overfitting; dropout layers, which randomly discard 

neural units and their connections and also help to prevent overfitting; and rectified linear 

unit (ReLU) activation functions, which improve training effectiveness [3].

The Long Short-Term Memory (LSTM) architecture is a type of recurrent neural network 

used to model sequences and forecast future values [6]. It utilizes embedded gates, which 

operate using piecewise multiplication of input and output data with vectors containing 

parameters that either magnify or diminish data to retain useful information while discarding 

noise (Fig. 1). This has been shown to alleviate many of the challenges faced with sequence 

modeling. We applied the LSTM to predict what the next measured pain score will be after 

administration of an analgesic drug, and compared the results with simpler techniques. Our 

objective was to compare the performance of conventional vs. state of the art machine 

learning techniques in predicting pain response.

II. Related Work

Previous work in predicting POUR risk has focused on identifying risk factors in isolation 

[4]. Major indicators include age, gender, and type of surgery. To our knowledge this is the 

first study which examined the capability of machine learning techniques to predict POUR 

across a wide range of variables.

Most efforts to forecast pain focus on long-term trajectories and daily trends [7] [8]. Tighe et 

al. used Markov decision processes to model pain transition states [9]. Intraday fluctuations 

and short-term analgesic response remains an open area of research, one in which machine 

learning may play an important role.

In our classification task (POUR prediction), we utilized temporal features derived from pain 

score sequences using a time series discretization technique called Symbolic Aggregate 

Approximation (SAX) [10]. A sliding window is placed at the start of the time series and 
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moved stepwise to the end. At each step, window values are averaged (Piecewise Aggregate 

Approximation, or PAA, which is a technique known as dimensionality reduction [10]), and 

that average value is assigned one of a fixed-size domain of alphabet letters that indicate the 

aggregate intensity (e.g. in a domain of 5 SAX letters, “A” indicates that the window’s time 

series values are very low, “C” indicates moderate intensity, and “E” indicates the upper 

range of possible values). We used a similar strategy to Ordóñez et al. who vectorized SAX 

letter transitions for classification purposes [11].

III. Methods

A. Predicting POUR

Our goal is to predict the risk of POUR based on patient and surgical characteristics. Patients 

were split into classes of equal size – one group containing patients who experienced POUR 

and the other having no complications.

We extracted 200 features for each patient in the electronic medical records (EMR) data. 

Basic features included patient age, gender, Chalson comorbidity index, body mass index 

(BMI), ethnicity, and International Classification of Diseases 9th edition (ICD9) code class. 

Pain score proportions were included, calculated as the quantity of individual pain scores 

divided by the total number of pain scores collected for the patient. Patient pain scores were 

linearly interpolated to 10-minute intervals, then reduced in dimensionality using PAA with 

a window width of 60 minutes, and finally discretized using a 5-letter SAX domain. A 

sliding window extracted the frequency of each two-letter score transitions (AA, AB, CC, 

etc), and these counts were included as features [11]. Another class of features included was 

analgesic medication administration, calculated as the sum dosage of each unique 

medication name and administration method (intravenous, oral tablet, etc.) given during 

recovery. Mobility records for each patient were calculated as counts of patient activity 

recorded by hospital staff, including bed-rest, chair, ambulate in room, etc.; range-of-motion 

indicators included passive, active, right/left arm, etc.; indicators which measured level of 

assistance needed by the patient as well as devices used for assistance and factors 

contributing to mobility impairment; and anti-embolism device usage indicators 

(antiembolism stockings, sequential compression device, etc) were counted and included as 

features as well. Categorical feature values (e.g. gender, ethnicity) were binarized so that 

each unique category was a unique feature set to one or zero.

The data were split into training, validation, and test sets using a 60:20:20 ratio. From the 

training set, we determined the most discriminative features using a random forest and 

sorted the features by descending importance [12]. We evaluated logistic regression and 

support vector machine (SVM) classifiers [5] for each subset of top-k features and 

simultaneously optimized the C regularization parameters for both types of models. Models 

were fit to the training set, and the parameter values and feature subsets were selected which 

corresponded to the highest validation set accuracy. Performance was evaluated as the 

accuracy achieved on the test set by the chosen model. The scikit-learn python library was 

utilized for the logistic regression and SVM classifiers.
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We utilized a multilayer perceptron (MLP) neural network architecture, which consisted of 

three hidden layers terminating at an output layer with softmax activation. Each hidden layer 

was a 32-node fully-connected layer with a L2 weight regularizer of 0.0001. Hidden layers 

utilized tanh activation functions and passed through a dropout layer with 50% dropout 

probability. This architecture was chosen using the same training-validation sets described in 

the previous paragraph. The network was trained for 10 rounds, and performance was 

evaluated as the accuracy achieved on the test set. The Keras deep learning python library 

was used for neural network development.

Given that current approaches to POUR identification do not necessarily include time 

stamps associated with each incident, it was not feasible to reliably specify when 

complications occurred for the purposes of excluding data collected after the incident. In an 

effort to correct this, we trained and evaluated seven instances of the models, each 

containing data recorded up to a given post-operative day (data from day one, days one and 

two, days one through three, etc.), and measured prediction accuracy at each trial to 

determine whether accuracy was affected by the collection of more data. We also trained and 

evaluated the models using all of the data as a comparative baseline.

B. Forecasting Pain Levels

The second goal in this experiment was to train a neural network on pain levels preceding 

analgesic administration, and associate those patterns with subsequent pain levels so that the 

model can forecast the anticipated reduction in pain following administration. To simplify 

the model for the purposes of developing a proof of concept, we limited evaluation to those 

instances in which 10 mg oxycodone was given orally, since this was the most common 

analgesic administration event in the data set, and represented a simpler mechanistic model 

for initial experimentation.

As Fig. 2 shows, and in keeping with the known pharmacokinetic profile of oral oxycodone, 

pain scores tended to stabilize approximately 50–60 minutes after drug administration on 

average; therefore, our strategy was to give the network sequences of 100 interpolated pain 

score values prior to drug administration (i.e. 500 minutes worth of interpolated scores; we 

refer to these as “lead-up sequences”) as input and the first score measured between 40 and 

120 minutes afterwards as output.

Our network architecture was one in which two divergent paths reconverge before the 

objective function. In one path, lead-up sequences were given as-is to an LSTM [6] (every 

LSTM in our network consisted of 256 memory cells), which was connected to another 

LSTM through an intermediary 50% dropout layer, and finally passed through a Rectified 

Linear Unit (ReLU) activation function [3]. The other path consisted of similar steps, but 

lead-up sequences were first reversed (this step has been shown to perform favorably in 

sequence translation [13]). The outputs from these two paths were merged into a single 50% 

dropout layer and finally combined into a dense layer with a ReLU activation function 

which returned a forecasting prediction.

One third of the data was set aside for testing, and the remaining two-thirds were split into 

75% training and 25% validation to choose the network architecture. Performance was 
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evaluated as the mean squared error (MSE) between the predicted and observed post-

administration score. The network was trained for 10 rounds.

We compared neural network performance to a baseline solution, defined as selecting an 

interpolated score shortly before drug administration and subtracting a value. We also 

evaluated an Elastic Net regression model (linear regression with both L1 and L2 

regularization) and support vector regression (SVR). Parameters for all models were selected 

by minimizing MSE and utilized the same train-validation-test split as the neural network.

IV. Experiments

A. Description of the Data

This was a retrospective study, approved by the University of Florida Institutional Review 

Board and conducted in accordance with the STROBE guidelines. surgical case data were 

obtained from the University of Florida’s integrated data repository. subjects included 

patients who underwent non-ambulatory/non-obstetric surgery at Shands Medical Center at 

the University of Florida between May 1, 2011 and March 31, 2014, totaling 26,090 records. 

All pain scores were documented by clinical staff and encoded on a scale ranging from 0 (no 

pain) to 10 (unbearable pain).

B. Results

There was no significant trend in test accuracy between the SVM and logistic regression 

models truncated after any postoperative day; however, there was a mild increase in accuracy 

with the MLP model. Table I lists the accuracies achieved by each of the models trained on 

all of the data (i.e. not truncated on any postoperative day). The SVM model was the top 

performer. The top ten features are enumerated in Table II. The feature importance column 

lists relative predictive power of the features as determined by the random forest. The No 
POUR Average Value and Complication Average Value columns give average feature values 

between the groups that did not and did experience POUR, respectively (note that, in the 

case of categorical data, these values correspond to proportions, since the binarized features 

were assigned values of one or zero). P-values are listed for testing the null hypothesis that 

feature values between the POUR and No POUR groups came from the same population, as 

determined by a two-tailed Mann-Whitney U test.

Table III lists the performance of the forecasting models and includes the MSE and Pearson 

correlation coefficient between predicted and observed scores. Elastic Net was found to be 

superior relative to the other models. The optimal baseline solution was determined to be the 

interpolated score 15 minutes prior to drug administration, minus 1.8.

V. Conclusions and Future Work

We explored the use of various neural network architectures and other machine learning 

approaches to address some challenges faced in anesthesiology, specifically forecasting 

patient pain response to analgesic and predicting postoperative urinary retention.
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Our findings in predicting POUR corroborate previous work relating patient characteristics 

to post-operative urinary retention risk [4]. We further demonstrated that the combination of 

these indicators and usage of machine learning classifiers allows for more a powerful 

prediction.

A drawback of our efforts was that the electronic medical records system did not have a 

timestamp attached to POUR incidence; thus, it was difficult to determine which features 

were influenced by the accumulation of more data. We addressed this issue by incrementally 

truncating data after later postoperative days and retraining the models on increasing 

amounts of data. While there was no trend in accuracy as affected by the inclusion of more 

or less data in the SVM and logistic regression models, there was a mild increase in 

accuracy with the MLP model over time. However, the most important features (determined 

by the random forest) were set on patient intake and did not change over time (see table 

Table II). Future efforts will involve improving data acquisition efforts in an attempt to 

determine exactly when a complication occurred and utilize only that data leading up to the 

incident.

To forecast pain levels after the administration of a specific pain medication (10 mg oral 

oxycodone), we constructed a neural network based on the Long Short-Term Memory 

(LSTM) architecture and trained it on pain score patterns. The neural network was compared 

with Elastic Net regression, support vector regression (SVR), and a baseline solution. The 

Elastic Net model was found to be the top performer; however, we suspect that training the 

LSTM with other vital signs collected alongside pain scores will improve results, since 

recurrent neural networks have been shown to learn interdependencies and patterns between 

multiple concurrent time series. At the time of our analysis, however, our data set was 

limited to post-operative pain scores and thus the network only had information on scores 

before and after drug administration.

While preliminary, our results show promise for researchers seeking to improve 

postoperative pain management with intelligent systems. With more descriptive record 

collection and the inclusion of more temporal data (e.g. other vital signs), these results will 

likely improve. Other strategies from modern deep learning research may further increase 

predictive ability. Our experiments demonstrate that these machine learning techniques may 

offer much benefit for developing smarter postoperative pain management strategies.
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Fig. 1. 
LSTM neural network architecture. Input, output, and forget gates magnify or discard 

incoming data vector elements using piecewise multiplication. Reprinted from “Long short 

term memory,” by BiObserver.1
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Fig. 2. 
Average pain scores leading up to and following the oral administration of 10 mg 

oxycodone, with shaded region indicating one standard deviation confidence interval.
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TABLE I

POUR prediction accuracy by model.

Model # Features Test Accuracy

SVM 34 66.0%

Logistic Regression 22 64.2%

Neural Network 200 61.8%
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TABLE II

POUR Top Predictive Features

Feature Feature Importance No POUR Average Value POUR Average Value p-value

Age 0.125 56.62 63.76 1.888 × 10−26

Earliest BMI 0.091 29.05 28.18 4.479 × 10−04

Modified Charlson 0.066 1.60 1.94 1.062 × 10−05

ICD-9 Class: Injury and Poisoning 0.013 0.16 0.21 2.438 × 10−02

Gender: Male 0.012 0.48 0.63 2.499 × 10−12

Gender: Female 0.012 0.52 0.37 2.499 × 10−12

Race: White 0.012 0.73 0.78 4.525 × 10−02

Race: Black 0.012 0.17 0.11 5.322 × 10−03

Pain Motif Count: BA 0.012 0.72 1.33 6.792 × 10−17

Pain Motif Count: AA 0.011 8.65 15.93 5.591 × 10−13
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TABLE III

Pain response to analgesic model performance

Model MSE Correlation Coefficient

Neural Network 5.54 0.604

Elastic Net 4.96 0.606

SVR 5.14 0.593

Baseline Solution 6.09 0.545
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