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ABSTRACT

The electromyogram (EMG) is an important tool for assessing

the activity of a muscle and thus also a valuable measure for

the diagnosis and control of respiratory support. In this article

we propose convolutive blind source separation (BSS) as an ef-

fective tool to pre-process surface electromyogram (sEMG) data

of the human respiratory muscles. Specifically, the problem of

discriminating between inspiratory, expiratory and cardiac mus-

cle activity is addressed, which currently poses a major obsta-

cle for the clinical use of sEMG for adaptive ventilation control.

It is shown that using the investigated broadband algorithm, a

clear separation of these components can be achieved. The algo-

rithm is based on a generic framework for BSS that utilizes mul-

tiple statistical signal characteristics. Apart from a four-channel

FIR structure, there are no further restrictive assumptions on the

demixing system.

1. INTRODUCTION

Blind Source Separation (BSS) plays an important role in pro-

cessing surface electromyographic (sEMG) measurements [1]

and can be employed to detect and distinguish crosstalk between

adjacent muscles [1]. Furthermore, several research groups re-

cently have reported the successful removal of electrocardio-

graphic (ECG) interference from EMG signals by means of BSS

techniques [2]. Both features are crucial in respiratory appli-

cations since they allow to discriminate between the activity of

inspiratory and expiratory muscles and to remove the strong in-

terference resulting from the electrical activity of the heart.

The mixing model assumed in a particular BSS algorithm

is a major determinant of separation success. For the separa-

tion of EMG signals, mostly instantaneous mixing models have

been employed in the past, despite the fact that these models are

only applicable in very specific settings [3]. Convolutive mix-

ing models, on the other hand, appear to provide a much more

realistic representation of EMG signal propagation paths [1] but

have only rarely been used in applications [4, 5], and to the au-

thor’s knowledge never been applied to the analysis of respi-

ratory EMG. In contrast to the muscles usually considered for

sEMG signal processing, respiratory muscles such as the di-

aphragm and the abdominal muscles are rather large and flat.

This observation distinguishes the proposed respiratory applica-

tion from various other EMG-based signal processing settings

and entails important consequences for the choice of the mixing

model, which will be the topic of section 2 of this article.

Following the discussion of the different mixing models

for BSS of respiratory EMG signals in section 2, we describe

a broadband algorithm for convolutive BSS that is based on a

generic framework for the simultaneous exploitation of several

statistical signal characteristics (TRINICON, TRIple-N Inde-

pendent component analysis for CONvolutive mixtures) [6, 7]

in section 3. Results of the application of this algorithm to

a clinical data set are presented in section 4, before section 5

concludes this article.

2. MIXING MODELS FOR SOURCE SEPARATION OF

SURFACE EMG SIGNALS

The contraction of a muscle fiber is triggered by an initial de-

polarisation of the muscle fiber membrane at the neuromuscu-

lar junction (NMJ), which then propagates along the fiber in the

form of an intracellular action potential (IAP) at a speed of 3–

5m/s. [8]. During the IAP’s propagation along the fiber, the

fiber represents a distributed current source and sink that evokes

a change in the skin surface potential. The electric field induced

by this current source can be considered quasi-static [9], i.e.,

changes are propagated nearly instantaneously from the fiber to

the skin. Figure 1 shows a simulation of the surface potentials

resulting from a single activation of two muscle fibers at differ-

ent depths, as measured by surface electrodes at different loca-

tions along the fibers. Notably, the increased damping induced

by the detection of a deeper fiber affects the end-of-fiber arti-

facts much less than the propagating signal components. This

is due to the spatial low-pass behavior of the volume conductor

and the end-of-fiber artifacts’ low spatial frequency [8].1 This

1The additional end-of-fiber signal at around 18ms is due to the two fiber

halves being of different lengths - at that point in time, the wave front travelling

along the opposite direction from the NMJ has reached the other fiber end.
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Fig. 1: Upper graph: Simulated surface potentials evoked by

a single firing muscle fiber (Single Fiber Action Potentials,

SFAPs) as detected by four surface electrodes positioned above

the NMJ (solid), above one of the two fiber ends (dash-dotted),

and at two positions in between (dashed, dotted). The simulation

model is due to Farina and Merletti (2001) [10]. Lower graph:

Same as upper graph, but for a deeper fiber.

discrepancy between the damping of the different signal compo-

nents with increasing distance can not be represented by means

of an instantaneous mixing model. A convolutive model, on the

other hand, can precisely represent this behavior when we con-

sider the input signal s(t) to be an impulse train, i.e., a digital

signal indicating whether the motor neuron fires an impulse at

instant t. This mathematical formulation allows to represent the

distributed current source by means of a point source, while all

information on the spatial behavior is contained in the coeffi-

cients of the mixing filter.

In the most general setting, a P -channel EMG signal can

be modelled as the sum of the contributions of all Motor Units2

(MUs) belonging to the muscles of interest. In terms of the Mo-

tor Unit Action Potentials (MUAPs), i.e., the changes in surface

potential that a single contraction of a particular MU evokes at

a particular electrode, this model can be formulated in discrete

time as

x(n) = Hs(n), (1)

with the measurement vector

x(n) = [x1(n), . . . , xP (n)]
T ∈ R

P×1, (2)

the mixing matrix

H =







h
T
1,1 · · · h

T
1,Q

...
. . .

...

h
T
P,1 · · · h

T
P,Q






∈ R

P×MQ, (3)

where hp,q = [hp,q,0 · · ·hp,q,(M−1)]
T ∈ R

M×1 contains the

time course of the length-M MUAP evoked at sensor p by motor

unit q, and with the source vector

s(n) = [sT1 (n), s
T
2 (n), . . . , s

T
Q(n)]

T ∈ R
MQ×1,where (4)

sq(n) = [sq(n), sq(n− 1), . . . , sq(n−M + 1)]T ∈ R
M×1.

In all practical applications, P ≪ Q and hence the problem

is strongly underdetermined. One therefore usually wishes to

approximate the system by a much smaller number of sources

Q ≪ Q. This is equivalent to assuming

xp(n) =

Q
∑

q=1

h
T
p,qsq(n) ≈

Q
∑

q=1

h
T
p,qsq(n) ∀ p, n. (5)

Now, on the one hand, due to the large spatial extension of

the respiratory muscles, different MUs belonging to the same

muscle can produce MUAPs of strongly varying wave shape,

depending on the relative position of the MU and the record-

ing electrode. On the other hand, the muscles are relatively

well-separated, in contrast to, e.g., forearm muscles. Hence,

the MUAPs of MUs belonging to one respiratory muscle may

vary in shape, but they will all be rather different from those

of the other respiratory muscles. This argument provides an

2A MU denotes the ensemble of a motor neuron and all muscle fibers inner-

vated by that neuron. Note that these fibers always fire synchronously.
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informal justification of approximation (5) when considering the

hp,q representative of all MUs belonging to a particular muscle,

and the sq(n) a superposition of the source signals of all MUs

represented by hp,q.

For source separation, i.e., for eliminating the crosstalk be-

tween the channels, a suitable MIMO demixing system needs to

be designed, yielding the output signals

yq(n) =

P
∑

p=1

w
T
q,pxp(n), (6)

where wp,q ∈ R
L×1 are the coefficients of the demixing filters.

The P · Q · L filter coefficients wp,q,κ, κ = 0, . . . , L − 1 are to

be blindly estimated by the BSS algorithm. It can be shown that

for an ideal separation the number P of sensors must be at least

equal to the assumed number Q of sources [7]. Hence, in this

study we choose P = Q.

3. TRINICON-BASED BLIND SOURCE SEPARATION

FOR CONVOLUTIVE MIXTURES

The most common method for BSS is the so-called Indepen-

dent Component Analysis (ICA), for which several different al-

gorithms have been developed in recent years. However, the

original ICA model is based on instantaneous mixtures (i.e., L =
1) [11]. To cover convolutive mixtures, i.e., to blindly estimate

all filter coefficients wp,q,κ, our examinations are based on a

more general approach. The employed concept called TRINI-

CON (TRIple-N ICA for CONvolutive mixtures) is a framework

for broadband adaptive MIMO signal processing algorithms [6,

7] and allows the simultaneous exploitation of all fundamental

statistical signal properties, namely nongaussianity, nonwhite-

ness and nonstationarity. For convolutive BSS these signal prop-

erties are used to minimize the mutual information known from

information theory, i.e., the crosstalk between all output signals

of the demixing system. It can be shown that in contrast to the

instantaneous case L = 1, the convolutive case L > 1 requires

the simultaneous exploitation of at least two of the three signal

properties. In this study, we apply a specially adapted and ef-

ficient realization of the concept using fast Fourier transforms

(FFTs).

In addition to the modeling by convolutive mixtures, another

challenge in the present biomedical application is the significant

level-difference (typically three orders of magnitude) between

the ECG component and the relevant EMG signals. We there-

fore apply a two-step approach which consists first of a so-called

sphering, followed by the actual source separation as described

above. The sphering stage, consisting of an eigenvalue decom-

position of the spatial correlation matrix and a power normaliza-

tion, turns out to be a crucial step in handling this level imbal-

ance so that it leads to a decisive numerical improvement of the

subsequent separation task.

Both the sphering stage as well as the separation stage can

be derived rigorously from the TRINICON framework. In the

present study, they are both carried out in an offline fashion,

i.e., calculations are performed with the complete dataset al-

ready available. The efficient frequency-domain realization

shown here is based on the use of a multivariate probability

density function so that cross-correlations between all frequency

components are taken into account and the commonly known

permutation ambiguity in traditional narrowband frequency-

domain BSS algorithms is avoided. It follows directly from the

generic broadband frequency-domain coefficient update equa-

tion (10.72) in [6] by approximating the constraint matrices L

and G
·

·
. The coupling of the frequency components is ensured

by using a spherical multivariate Laplacian density. (See also

[7], p. 130, second column in fig. 4.10, for a classification of this

realization.)

Algorithm 1 Convolutive Blind Source Separation based on

Independent Vector Analysis

Spatial prewhitening:

1: Principal component analysis

EDE
T = Ê

{

x(n)xT(n)
}

, where

x(n) = [x1(n), . . . , xP (n)]
T

2: Sphering:

[x1(n), . . . , xP (n)]
T ← ED

−1/2
E

T
x(n)

Main algorithm:

3: Short-time Fourier transform by windowing:

X(ν)
p (m)⇐ xp(n), p = 1, . . . , P

4: Centering:

X(ν)
p (m)← X(ν)

p (m)−
1

N

N−1
∑

m′=0

X(ν)
p (m′)

5: for ℓ = 1, . . . , ℓmax do:

6: Circular convolution to obtain (preliminary) outputs:

Y
(ν)(m) = W

(ν)ℓ−1
X

(ν)(m), with

X
(ν)(m) =

[

X
(ν)
1 (m), . . . , X

(ν)
P (m)

]T

,

Y
(ν)(m) =

[

Y
(ν)
1 (m), . . . , Y

(ν)
P (m)

]T

7: Computation of broadband normalization factors:

bp(m) =

√

√

√

√

1

M

M−1
∑

ν=0

|Y
(ν)
p (m)|2

8: Multivariate score function:

Φ
(ν)(m) =

[

Y
(ν)
1 (m)/b1(m), . . . , Y

(ν)
P (m)/bP (m)

]T

9: Coefficient update:

W
(ν)ℓ = W

(ν)ℓ−1 + µ

×

[

I−
1

N

N−1
∑

m=0

Φ
(ν)(m)

(

Y
(ν)(m)

)H

]

W
(ν)ℓ−1
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Fig. 2: Measurement data consisting of four differentially

recorded signals: diaph1 (lower diaphragm), diaph2 (upper di-

aphragm), intercost (intercostal muscles), and sterno (M. Sce-

lenus / Sternocleido Mastoideus, on the neck). DC compo-

nents were suppressed by highpass filtering. Sampling interval

Ta = 0.976ms.

10: Minimum distortion principle:

W
(ν)ℓ ← diag

{

(

W
(ν)ℓ

)

−1
}

W
(ν)ℓ

11: Transformation of MIMO filter coefficients to time domain:

W(n)⇐W
(ν)ℓmax , ν = 0, . . . ,M − 1

(n = time index, m = (temporal) block index, ν = frequency

index, p = channel index, N = number of blocks, M = 2L =
number of frequency bands, P = number of channels, µ = step

size, ℓ = iteration index)

4. EXPERIMENTAL RESULTS

The BSS algorithm described in the previous section has been

applied to actual sEMG measurement data.3 Figure 2 shows the

four EMG channels that have been recorded - note the extremely

dominant ECG component in the upper three channels. Figure 3

shows the output signals generated by the BSS algorithm. As

desired, the ECG component (channel 1) seems to be reason-

ably well separated from the other signal sources. Moreover,

output channel 2 seems to capture expiratory muscle activity -

3Data collected by Philippe Jolliet and his team during a clinical study enti-

tled “Comparative Effects on Diaphragmatic Electrical Activity and Respiratory

Pattern of Various Levels of Assistance”, approved by the local ethics committee

at Lausanne University Hospital (identifier: NCT01248845).
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Fig. 3: Output signals of the convolutive blind source separation.

Dashed red lines indicate the beginning of inspiration; dashed

blue lines the beginning of expiration. These have been derived

manually from synchronously recorded pneumatic data. au =
arbitrary units.

supposedly from the abdominal muscles - while channels 3 and

4 show inspiratory muscle activity. One might furthermore spec-

ulate that channels 3 and 4 most likely represent intercostal and

diaphragmatic activity. Note that there is no reference signal that

could be used to validate the separated source signals (except for

pneumatic signals, as shown), since the real level of activity of

the different muscles is unknown.

The necessity of convolutive mixtures could also be con-

firmed experimentally on this data set. For the results shown

here, we empirically determined a necessary filter length of L =
64.4 In particular, it turned out that in the simple case of an

instantaneous mixing model (i.e., L = 1) it was not possible

to obtain any significant separation. Note that the filter length

L = 64 appears reasonable from a physiological point of view:

Each demixing filter effectively represents a propagation path of

total length ∆s = vLTa ≈ 25 cm (assuming v = 4m/s, see

above). This is consistent with the dimensions of the muscle-

sensor setup.

5. CONCLUSION

In this article we have presented evidence that the use of convo-

lutive BSS may significantly advance the preprocessing of sur-

face EMG measurements of respiratory muscles. Despite the

limited validation data set, it can be concluded that the proposed

algorithm has the potential of separating activity between inspi-

ratory and expiratory muscles and removing ECG artifacts, both

4The filter length was varied in powers of two in order to obtain an efficient

BSS implementation using FFTs.
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significantly better than previously proposed algorithms for in-

stantaneous BSS. While in the present study an offline algorithm

was used to compute the coefficients of the demixing filter, an

adaptive variant of the proposed algorithm is immanent: instead

of only computing the coefficients of the demixing filter initially

before performing the actual demixing, an online update of the

filter coefficients using block or incremental updates can be per-

formed, allowing for real-time applications. The performance of

the proposed algorithm will be evaluated on simulated data as

well as on a wider set of clinical data in a subsequent study.
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