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 

Abstract— Multivariate multiscale entropy (mvMSE) has 

been proposed as a combination of the coarse-graining process 

and multivariate sample entropy (mvSE) to quantify the 

irregularity of multivariate signals. However, both the coarse-

graining process and mvSE may not be reliable for short signals. 

Although the coarse-graining process can be replaced with 

multivariate empirical mode decomposition (MEMD), the 

relative instability of mvSE for short signals remains a problem. 

Here, we address this issue by proposing the multivariate fuzzy 

entropy (mvFE) with a new fuzzy membership function. The 

results using white Gaussian noise show that the mvFE leads to 

more reliable and stable results, especially for short signals, in 

comparison with mvSE. Accordingly, we propose MEMD-

enhanced mvFE to quantify the complexity of signals. The 

characteristics of brain regions influenced by partial epilepsy 

are investigated by focal and non-focal electroencephalogram 

(EEG) time series. In this sense, the proposed MEMD-enhanced 

mvFE and mvSE are employed to discriminate focal EEG signals 

from non-focal ones. The results demonstrate the MEMD-

enhanced mvFE values have a smaller coefficient of variation in 

comparison with those obtained by the MEMD-enhanced mvSE, 

even for long signals. The results also show that the MEMD-

enhanced mvFE has better performance to quantify focal and 

non-focal signals compared with multivariate multiscale 

permutation entropy. 

I. INTRODUCTION 

Entropy methods quantify the degree of regularity of a 
univariate signal by evaluating the appearance of repetitive 
patterns [1]. One of the most popular and powerful entropy 
approaches is sample entropy (SampEn) [2]. SampEn is 
relatively robust to noise and data length [2]. Moreover, in 
comparison with permutation entropy (PerEn), SampEn takes 
into account the presence of equal values and the differences 
between neighboring samples in embedded vectors [2, 3]. 
These characteristics make the SampEn an appealing tool for 
a large number of real world signal processing applications [4, 
5]. Nevertheless, SampEn is not reliable when the signal is 
short.  

Conventional methods to measure the complexity of 
physiological time series fail to account for the multiple time 
scales inherent in such signals [6, 7]. To tackle this deficiency, 

 
 

multiscale entropy (MSE) was proposed by Costa et al. [8]. In 
the MSE algorithm, the original signal is initially divided into 
non-overlapping segments of length β, termed scale factor. 
Then, the average of each segment is estimated to obtain the 
coarse-grained signals (called coarse-graining process). 
Finally, the SampEn value is calculated for each coarse-
grained series. 

The MSE-based methods, though powerful and 
widespread, are not able to reveal the dynamics across 
channels of a multivariate recording. For such time series, 
evaluation of cross-statistical properties between multiple 
channels is necessary for a complete understanding of the 
underlying dynamics of a system [9, 10]. Accordingly, 
multivariate SampEn (mvSE) was proposed [10] and, 
consequently, the combination of MSE and mvSE lead to the 
multivariate MSE (mvMSE) [10].  

In spite of the abovementioned mvSE benefit, when mvSE 
is applied to short signals, the results may be undefined or 
unreliable. To alleviate this shortcoming, the multivariate 
FuzEn (mvFE) method has been recently proposed [11]. 
However, this method, though powerful, is slow.     

Since the coarse-graining step of mvMSE decreases the 
signal length proportionally to the scale factor, the results 
achieved by mvMSE might not be reliable and stable for high 
scale factors, especially for short signals. To address this 
problem, the combination of multivariate empirical mode 
decomposition (MEMD) and mvSE was proposed [9]. MEMD 
is a fully data-driven multiscale algorithm decomposing the 
original multivariate signal into a number of intrinsic mode 
functions (IMFs) [12]. Unlike MSE, MEMD can tackle the 
non-stationarity and nonlinearity of signals [12]. Unlike the 
coarse-graining process of the MSE, the length of each 
decomposed signal is equal to the original signal.  

In this paper we propose a new fuzzy membership function 
to decrease the computation time of existing mvFE and 
consequently introduce a new complexity indicator, termed 
MEMD-enhanced mvFE. The performance of this technique 
is illustrated with publicly-available focal and non-focal 
signals as this kind of biomedical data is a popular candidate 
to evaluate entropy metrics [13-15]. Sharma and colleagues 
showed that the focal EEG time series are more regular in 
comparison with non-focal ones. They also demonstrated that 
all entropy measures of focal EEG signals are smaller than 
non-focal ones [13, 14]. 

II. MATERIALS 

A. White Gaussian (discrete-time) noise 

White Gaussian noise (WGN) is a random time series 
having equal energy at all frequencies. The name white has its 
origin from the fact that this kind of signal has a constant 

power spectral density ( )S f  as ( )  wS f C , where Cw is a 
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constant number [16]. A WGN signal is defined as a sequence 
of consecutively uncorrelated random variables with zero 
mean and finite variance [17].  

B.  Real EEG Recordings 

The intracranial EEG signals were recorded from five 
patients suffering from pharmacoresistant focal-onset epilepsy 
leading to two main separate sets of signals. The first one was 
recorded from brain regions where the primarily ictal EEG 
recordings changes were detected as judged by expert visual 
inspection (“focal signals”). The second set of signals was 
recorded from brain regions not involved at seizure onset 
(“non-focal signals”). Each of 5 patients includes 750 focal 
and 750 non-focal time series. The length of each signal was 
10240 sample points: 20 seconds at a sampling frequency of 
512 Hz. Each of focal and non-focal signals includes two EEG 
time series recorded from adjacent channels. For more 
information about the dataset, please, refer to [15]. Before 
computing the existing and proposed approaches, all signals 
were digitally filtered employing an FIR band-pass filter with 
cut-off frequencies at 0.5 Hz and 40 Hz. 

III. METHODS 

The proposed MEMD-enhanced mvFE includes two steps:  

A. Multivariate Empirical Mode Decomposition 

First, the original multivariate signal Y is decomposed to 

a number of IMFs. In each step of the MEMD algorithm, the 

mode with the highest frequency is removed from a signal 

[12]. In fact, the characteristics frequency decreases with the 

IMF number. Thus, the first IMF, IMF1, shows the highest 

frequency component in a time series. In contrast, the last 

IMF, IMFjmax, depicts the trend of the signal usually 

containing the signal power and little signal detail [9].  

One of the most important characteristics of EMD-based 

methods is that the IMFs show a quasi- dyadic filterbank 

structure for WGN. MEMD is able to align the frequency sub-

bands from different channels both for single and averaged 

noise realizations. For more information about the MEMD 

please refer to [12]. Using MEMD, unlike the coarse-graining 

process, the signal length does not decrease leading to more 

reliable results [12]. After calculating all IMFs, the 

cumulative sums of IMFs, ( )kC Y , for each scale factor k are 

defined as follows: 

1

( )



k

k

j

j

IMFC Y                         (1) 

Starting from the first scale to the last one leads to a 

multilevel filtering of the original time series. It is worth 

noting that the last cumulative sum is equal to the original 

signal, i.e., max ( ) k
C Y Y [9, 18]. The second step of the 

proposed method is to use mvFE for each ( )kC Y .  

B. Multivariate Fuzzy Entropy 

One of the biggest deficiencies of the mvSE is that it 

ignores every distance (d) between two composite delay 

vectors that is larger than a defined threshold r [11]. To 

alleviate this problem, a fuzzy membership function ( , ) d r

[11] was proposed as follows:  
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                   (2) 

Although the above-mentioned problem is solved by using 

that function [11], this method is noticeably slower than the 

mvSE, especially when the number of channels or sample 

points of every channel, or the value of embedding dimension 

is high. To tackle this deficiency, we propose to use another 

well-known fuzzy membership function as: 

  ( , ) exp ( ) /   nd r d r                         (3) 

where n shows the fuzzy power and is usually equal to 2.  

To calculate mvFE, multivariate embedded vectors are 

initially generated based on the Takens embedding theorem 

[10, 11, 19]. The multivariate embedded reconstruction is 

defined as: 

1 1 1 2 2 21, 1, 1, ( 1) 2, 2, 2, ( 1)

, , , ( 1)

( ) [ , ,..., , , ,..., ,

... , ,..., ]                                          (4)
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where 
1 2[ , ,..., ] pM m m m and 

1 2[ , ,..., ]   pτ are the 

embedding and the time lag vectors, respectively [20].  

For p-variate time series ,  

, 1, 1{ }  

 

k p b N

k b k bX , where N is the 

length of each channel, the mvFE algorithm, as a natural 

extension of the standard univariate FuzEn [21], includes the 

following steps: 

1. Form multivariate embedded vectors ( ) m

mX i R  where  

i=1,2,...,N-n and n=max{M}1×max{τ}. 

2. Calculate the distance between any two composite delay 

vectors ( )mX i  and ( )mX j  as the maximum norm. 

3. For a given threshold r and fuzzy power n, define a global 

quantity ( ) m r , as the average membership grade as: 
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4. Extend the dimensionality of the multivariate delay 

vector in (5) from m to (m+1). This can be done in p 

different ways, as from 1 2[ , ,..., ,..., ] h pm m m m to 

1 2 1[ , ,..., ,..., ] ( 1,..., ) h pm m m m h p . In this process, the 

dimension of the other variables are unchanged. 

5. Calculate 
( 1) ( ) m r which denotes the average over all 

( 1) ( ) hm r  values in an (m+1)-dimensional space. 

6. Finally, mvFE is defined as: 
( 1) ( )

mvFE( , , , ) ln
( )





 
   

 

m

m

r
r n

r
X τ               (6) 

Since multi-channel signals may have different amplitude 

ranges, the distances calculated on embedded vectors may be 

biased toward the largest amplitude ranges variates. 

Accordingly, we scale all the data channels to the same 

amplitude range [0,1], which is the preferred choice [10]. 

IV. RESULTS 

A. White Gaussian noise 

To understand the ability of mvFE and mvSE to quantify 
the regularity of short and long signals, we use uncorrelated 3-
channel WGN signals as functions of sample points of size N. 



  

Fig. 1 depicts the mvSE and mvFE values for signal lengths 
equal to 30, 100, 300, 1000, 3000, and 10000, computed from 
40 different multichannel WGN time series. The results 
demonstrate that the greater the value of N, the more robust 
both the mvSE and mvFE estimates, as seen from the error 
bars. τk, mk, and r for mvSE and mvFE were 1, 2, and 0.15 
multiplied by the standard deviation (SD) of the original time 
series according to [2, 10]. 

It has been recommended that the number of sample points 
is at least 10m, or preferably at least 30m, to robustly estimate 
mvSE [10]. In mvSE, we count the number of instances where

[ ( ), ( )] ,    m md X i X j r j i . In case the time series length is 

too small, this number may be 0, leading to an undefined 
entropy value. Accordingly, the results obtained by mvSE for 
N=30 and 100 are not defined in Fig. 1.  

In contrast, the fuzzy entropy-based methods consider any 

two composite delay vectors ( )mX i  and ( )mX j , leading to 

more reliable results for short time series. For example, the 
mvFE values, unlike mvSE ones, are defined for N=30 and 
N=100. We also calculate the coefficient of variation (CV) of 
existing and proposed mvFE- and mvSE-based results, shown 
in Table I. As expected, for each number of sample points, the 
CV value for mvFE was noticeably lower than that for mvSE. 
It shows the advantage of mvFE for short and long multivariate 
signals. We also compare the running time of the existing and 
proposed mvFE and mvSE methods for different number of 
sample points (i.e., 1000, 3000, and 30,000) using WGN 
signals in Table II. Generally, the longer the signals, the more 
noticeable differences between the computation time of these 
methods. As can be seen in Table II, the proposed mvFE is 
about 3 to 7 times faster than the existing mvFE [11], although 
their CV values are similar (Table I).  

 

Fig. 1. Error bars illustrating the mean ± SD of the mvSE (blue) and mvFE 
(red) values as functions of the length of the 3-channel WGN signals computed 
from 40 different multichannel WGN time series.  

TABLE I: THE CV VALUES OF THE PROPOSED AND EXISTING MVFE AND 

MVSE RESULTS FOR 3-CHANNEL WGN SIGNALS. 

Methods 30 samples 
100 

samples 

300 

samples 

1000 

samples 

3000 

samples 

10000 

samples 

proposed 
mvFE 

0.601 0.097 0.039 0.016 0.008 0.005 

mvFE [11] 0.593 0.098 0.040 0.016 0.008 0.005 

mvSE undefined undefined 0.311 0.054 0.024 0.008 

 
 

TABLE II: THE COMPUTATION TIME OF THE EXISTING MVFE [11] AND 

PROPOSED MVFE AND MVSE USING 3-CHANNEL WGN SIGNALS. 
 

Methods 1000 samples           3000 samples          10000 samples  

proposed mvFE 0.231 s 1.013 s 7.141 s 

mvFE [11] 0.684 s 3.842 s 46.42 s 

mvSE 0.247 s 1.019 s 7.214 s 

B. Real EEG Focal and Non-focal Signals 

To locate the area of the brain affected by focal epilepsy 

as a pre-surgical diagnosis of seizure, EEG signals are widely 

used [13-15]. The error bars demonstrate the mean ± standard 

deviation (SD) of the MEMD-enhanced mvSE (Fig. 2) and 

MEMD-enhanced mvFE values (Fig. 3), computed from focal 

and non-focal EEGs. The error bars in Fig. 2 and 3 show that 

the non-focal signals are more irregular than focal time series 

and it is in agreement with [13-15].  

The CV values obtained by the proposed MEMD-
enhanced mvFE are lower than those done by MEMD-
enhanced mvSE. These facts show that the proposed method 
leads to more stable results in comparison with MEMD-
enhanced by mvSE for not only short signals but also long 
ones. 

Multivariate multiscale PerEn (mvMPE) has been recently 
proposed [22] to quantify the irregularity of multivariate 
signals. Since mvMPE is conceptually simple and structurally 
robust to noise, it has been widely used in many biomedical 
signal processing applications [22-24]. Here, we also use 
mvMPE to compare with our proposed method. The results 
obtained by mvMPE are shown in Fig. 3. The average of 
entropy values for focal signals are higher than that for non-
focal ones at scale 1 to 3 showing to contradict previous 
findings in short scales. In contrast, the average of entropy 
values for non-focal signals are larger than those for focal ones 
at time scales 4 to 10. It is in agreement with [13-15]. 
Nevertheless, mvMPE seems to be less sensitive to differences 
between focal and non-focal EEGs. As demonstrated before, 
the MEMD-enhanced mvFE leads to higher irregularity for 
non-focal signals at all scale factors. It shows the proposed 
method outperforms mvMPE to characterize focal and non-
focal signals. Note that the time delay and embedding 
dimension for mvMPE were 1 and 5 according to [22, 23].  

A paired t-test was also run for AD patients vs. controls. 

We adjusted the false discovery rate independently for each 

multivariate entropy measure. The results show that the 

mvMPE achieves significant differences at scales 4-10, 

although MEMD-enhanced mvSE and mvFE lead to 

significant difference at all scales. Note that the significance 

level of p-value tests was 0.01 for the EEG time series. 

V. CONCLUSION 

We first proposed the mvFE with a new fuzzy membership 

function to reduce its computation time. The proposed mvFE 

was significantly faster than the existing mvFE. Moreover, we 

showed mvFE leads to more stable results for short and long 

time series, in comparison with mvSE. Based on the new 

mvFE, we introduced the MEMD-enhanced mvFE to quantify 

the complexity of multivariate signals. Using the focal and 

non-focal signals, the MEMD-enhanced mvFE-based results, 

in comparison with those obtained by MEMD-enhanced 

mvSE and mvMPE, as two powerful multivariate approaches, 

demonstrated the power of the proposed method. Our results 

show that MEMD-enhanced mvFE is a powerful tool to 

quantify multivariate signals. 
 



  

 

(a) MEMD-enhanced mvSE  

 

(b) MEMD-enhanced mvFE  

Fig. 2. Error bars illustrating the mean ± SD of the (a) MEMD-enhanced mvSE 
and (b) MEMD-enhanced mvFE values computed from focal and non-focal 
EEG signals. Red and blue indicate focal and non-focal signals, respectively. 

 

Fig. 3. Error bars illustrating the mean ± SD of the mvMPE values computed 
from focal and non-focal EEG signals. Red and blue indicate focal and non-
focal signals, respectively. 
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