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Abstract— Limited data and low dose constraints are com-
mon problems in a variety of tomographic reconstruction
paradigms which lead to noisy and incomplete data. Over
the past few years sinogram denoising has become an essen-
tial pre-processing step for low dose Computed Tomographic
(CT) reconstructions. We propose a novel sinogram denoising
algorithm inspired by the modern field of signal processing
on graphs. Graph based methods often perform better than
standard filtering operations since they can exploit the signal
structure. This makes the sinogram an ideal candidate for
graph based denoising since it generally has a piecewise smooth
structure. We test our method with a variety of phantoms
and different reconstruction methods. Our numerical study
shows that the proposed algorithm improves the performance of
analytical filtered back-projection (FBP) and iterative methods
ART (Kaczmarz) and SIRT (Cimmino). We observed that graph
denoised sinogram always minimizes the error measure and
improves the accuracy of the solution as compared to regular
reconstructions.

Index Terms— Sinogram denoising, Graph Total variation,
Low dose, Computed tomography, Tomography

I. INTRODUCTION

Low dose, limited and incomplete data are common prob-
lems in a variety of tomographic reconstruction paradigms.
Computerized Tomography (CT) and Electron Tomography
(ET) reconstructions are usually ill-posed inverse problems
and encounter significant amounts of noise [1][2]. During
data collection individual projections are usually marred
by noise due to low illumination, which stems from low
electron or x-ray dose. Low dose CT projections have a low
signal to noise ratio (SNR) and render the reconstruction
erroneous and noisy. Traditional scanners usually employ an
analytical filtered back-projection (FBP) based reconstruc-
tion approach which performs poorly in limited data and low
SNR situations [3]. Over the past few years there has been
a significant effort to reduce the dose for CT reconstructions
because of associated health issues [4]. Current efforts to
reduce the dose for CT reconstructions can be divided into
three categories [5][6]: 1) Pre-processing based methods
which tend to improve the raw data (sinogram) followed
by standard FBP based reconstruction [7][8]. 2) Denoising
of reconstructed tomograms in image domain. 3) Iterative
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image reconstruction and statistical methods[9]. Usually, a
combination of the methods enlisted above render the best
results. Denosing of the sinogram has been proposed in sev-
eral studies using a variety of extensively studied approaches.
These algorithms vary from simple adaptive filtering and
shift-invariant low-pass filters to computationally complex
bayesian methods [10][11]. Other approaches involve Fourier
and wavelet transform based multi-resolution methods [3]
and denoising projection data in Radon space[12].

The emerging field of signal processing on graphs [13] has
made it possible to solve the inverse problems efficiently
by exploiting the hidden structure in the data. One such
problem is the graph based denoising which tends to perform
better than the simple filtering operations due to its inherent
nature to exploit the signal structure [13]. In this study
we propose a new method to remove noise from the raw
data (sinogram) using graph based denosing. Our proposed
denoising is general in the sense that it can be applied to the
raw data independent of the type of data or application under
consideration. Furthermore, as shown in the experiments, it
is independent of the reconstruction method. In fact, our
denoising method tends to improve the quality of several
standard tomographic reconstruction algorithms.

II. PROPOSED METHOD

Let S ∈ <p×q be the sinogram corresponding to the
projections of the sample x ∈ <n×n being imaged, where
p is the number of rays passing through x and q is the
number of angular variations at which x has been imaged.
Let b ∈ <pq be the vectorized measurements or projections
and A ∈ <pq×n2

be the sparse projection operator. Then, the
goal in a typical CT or ET based reconstruction method is to
recover the sample x from the projections b. Of course, one
needs to solve a highly under-determined inverse problem
for this type of reconstruction, which can be even more
challenging if the projections b are noisy. To circumvent
the problem of noisy projections, we propose a two-step
methodology for the reconstruction. 1) Denoise the sinogram
S using graph total variation regularization. 2) Reconstruct
the sample x from denoised projections using any standard
reconstruction method.

While, we explain our proposed method in detail in the
following section, we motivate the denoising method here via
Fig. 1 which shows sinograms corresponding to the Modified
Shepp-Logan and Smooth phantoms. It can be observed
that the sinograms have a piecewise smooth structure. If a
sinogram is treated as an image, it can be said that some
patches of the sinogram are similar to other patches for
a given phantom. This structure can be exploited in the
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Fig. 1: The first row shows the noisy (relative noise 0.08) and
denoised sinograms for the Shepp-Logan phantom and the second
row for smooth phantom. Clearly, the projections have a smooth
structure which when exploited denoises these sinograms signifi-
cantly.

form of a pairwise similarity graph constructed between the
patches of the sinogram and then used to denoise it via graph
regularization.

III. GRAPH BASED SINOGRAM DENOISING

A. A Brief Introduction to Graphs

A graph is a tupple G = {V, E ,W} where V is a set
of vertices, E a set of edges, and W : V × V → R+ a
weight function. The vertices are indexed from 1, . . . , |V|
and each entry of the weight matrix W ∈ R|V|×|V|+ contains
the weight of the edge connecting the corresponding vertices:
Wi,j =W(vi, vj). If there is no edge between two vertices,
the weight is set to 0. We assume W is symmetric, non-
negative and with zero diagonal. We denote by i ↔ j that
node vi is connected to node vj . For a vertex vi ∈ V , the
degree d(i) is defined as the sum of the weights of incident
edges: d(i) =

∑
j↔iWi,j . A graph signal is defined as a

function f : V → R assigning a value to each vertex. It
is convenient to consider a signal f as a vector of size |V|
with the ith component representing the signal value at the
ith vertex.

B. Graph Construction

For our purpose the graph G is a patch graph, i.e, a graph
between the patches of sinogram S and it is built using a
three-step strategy. In the first step the sinogram S ∈ <p×q
is divide into pq overlapping patches. Let si be the patch of
size l × l centered at the ith pixel of S and assume that all
the patches are vectorized, i.e, si ∈ <l

2

. In the second step
the search for the closest neighbours for all the vectorized

Algorithm 1 Graph Total Variation Denoising

INPUT: u0 = 0, ε > 0, OUTPUT: xj
for j = 0, . . . J − 1 do

xj = Y −∇∗G(uj)
rj = ujτ +∇G(xj)
sj = max(rj − γτ, 0)
uj+1 = 1

τ (rj − sj)
Fj+1 = ‖b− xj‖22 + γ‖uj+1‖1
if ‖Fj+1−Fj‖2F

‖Fj‖2F
< ε then

BREAK
end if

end for

patches is performed using the Euclidean distance metric.
Each si is connected to its K nearest neighbors sj , resulting
in |E| number of connections. In the third step the graph
weight matrix W is computed as

Wi,j =

{
exp

(
− ‖(si−sj)‖

2
2

σ2

)
if sj is connected to si

0 otherwise.

The parameter σ can be set experimentally as the average
distance of the connected samples. This procedure has a
complexity of O(pqe) and each Wi,j can be computed in
parallel.

C. Graph Total Variation Denoising

Once the graph G has been constructed, we solve the
following optimization problem to denoise b.

min
z
‖z − b‖22 + γ‖∇Gz‖1, (1)

which can also be written as,

min
z
‖z − b‖22 + γ

∑
i

∑
j

√
Wi,j |zi − zj |, (2)

where ∇Gz denotes the graph total variation of z. The
parameter γ controls the amount of smoothing on z. Higher
levels of noise require higher γ.

In simple words, as `1 norm promotes sparsity, problem
(1) tends to smooth the projections b, such that the new
projections z have sparse graph gradients. Intuitively, this
makes sense, as the sinograms (Fig. 1) have a piecewise
smooth structure. Thus, all the strongly connected patches
in S will have a similar structure in z (zero graph gradi-
ents) whereas the weakly connected patches in S will have
different structure in z (non-zero graph gradients).

The solution to problem (1) is given by the algorithm
given below. The algorithm requires ∇∗G(·), which is the
adjoint operator (divergence) of ∇G and τ is the spectral
norm (maximum eigenvalue) of ∇G , i.e, τ = ‖∇G‖2. The
algorithm is a simple application of the proximal splitting
methods commonly used in signal processing [14]. Note that
the solution to the `1 norm is a simple element-wise soft-
thresholding operation.
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Fig. 2: `2 reconstruction error variations with the iterations k, the recovered phantoms and their intensity profiles for the following
methods: 1) Filtered back projection (FBP) 2) Graph denoised FBP (FBP-GD) 3) ART / SIRT reconstruction (without denosing) and 4)
Graph denoised ART / SIRT reconstruction (ART-GD, SIRT-GD). The images can be best viewed in colour on the electronic version of
the paper.

IV. RECONSTRUCTION PHASE

We reconstruct the refined sinogram using different analyt-
ical and iterative methods. Analytical methods such as FBP
[15] are commonly used in CT scanners and other tomo-
graphic modalities since they are simple and computationally
trivial. However, such methods give poor reconstructions
when data is limited and noisy. In such cases iterative
methods have to be used. Iterative row action methods
such as algebraic reconstruction technique (ART) [16] and
simultaneous reconstruction technique (SIRT) [17] are com-
monly used due to their semi-convergance and regularization
capabilities. ART or Kaczmarz method operates on each
row/equation of the linear system defined in section I and
treats it as a hyperplane in vector space. Starting from an

initial guess each iteration entails sweeping all rows by
taking orthogonal projections successively until it converges
to a solution, this can be defined as follows:

X ← X + λ
bi − aTi x
‖ai‖22

ai λ ∈ (0, 2) (3)

The fact that during the early iterations Kaczmarz quickly
semi-converges to an approximate solution makes it an ideal
method to test sinogram denoising. A refined sinogram
should semi-converge to a lower error quicker and diverge
from the most accurate solution slower. The class of SIRT
methods access all rows simultaneously and generally have
better regularization capabilities as compared to ART. Al-
though there are several different variants of SIRT we used



Cimmino’s method [18] which can be defined as follows:

xk+1 = xk + λk
1

m

m∑
n=1

wi
bi −

〈
ai, x

k
〉

‖ai‖22
ai. (4)

Cimmino’s method usually converges faster than ART and
has similar semi-convergance properties.

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

We perform our denoising and reconstruction experiments
on 5 different types of phantoms 1) Shepp-Logan [19] 2)
smooth 3) binary 4) grains and 5) fourphases [20] each of
the size 64×64. The sinograms S are of size 95×36, where
each column corresponds to the projections at each of the
equally spaced 36 angles from 0 to 180 degrees. Random
Gaussian noise with mean 0 and variance adjusted to the
5% and 8% of the norm of S is added into S. For the graph
based total variation denoising stage of our experiments, the
sinogram is divided into 95×36 = 3420 overlapping patches
of size 3× 3. The graph G is constructed between the 3420
patches with 10 nearest neighbors (K = 10) and σ for the
weight matrix (Section III-B) is set to the average distance
of the 10-nearest neighbors. Various values of γ in the range
of [0, 10] are tested for denoising (Algorithm 1). The best γ
is selected based on the minimum `2 reconstruction for the
phantoms. Fig. 1 shows the quality of graph total variation
based denosing for the Modified Shepp-Logan sinogram (row
1) and smooth phantom sinogram (row 2). The relative noise
for each of the two sinograms is 0.08.

Table I and Fig. 2 present `2 reconstruction error variations
with the iterations k, the recovered phantoms and their
intensity profiles for the following methods: 1) Filtered
back projection (FBP) 2) Graph denoised FBP (FBP-GD) 3)
ART / SIRT reconstruction (without denosing) and 4) Graph
denoised ART / SIRT reconstruction (ART-GD, SIRT-GD).
Kaczmarz method with the relaxation parameter λ = 0.25 is
used for ART and Cimmino’s method is used for SIRT based
reconstructions. Due to space constraints we only present
results for Shepp-Logan and smooth phantoms. A close
analysis of the results show that graph based denoising helps
in attaining lower reconstruction error for analytical (FBP)
as well as iterative (ART and SIRT) methods. This result
is also visually obvious from the reconstructed phantoms.
The error curves and intensity profiles (2) show that for
both phantoms a lower error can be achieved by using
graph denoised sinogram rather than regular raw data. Shepp-
Logan reconstruction with ART specifically shows that the
semi-convergence to an approximate solution is quick and
divergence from this approximation is slower, an indication
that the system has lower noise. The results show that the
proposed method is extremely general and can be adapted
for any tomographic reconstruction modality regardless of
the reconstruction method employed.
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