Abstract:
Current solutions for the monitoring of pulmonary artery pressure (PAP) in patients suffering from pulmonary hypertension are limited to invasive means. Non-invasive alte...Show MoreMetadata
Abstract:
Current solutions for the monitoring of pulmonary artery pressure (PAP) in patients suffering from pulmonary hypertension are limited to invasive means. Non-invasive alternatives, such as Doppler echocardiography, are incompatible with continuous monitoring due to their dependency on qualified personnel to perform the measurements. In the present study, a novel non-invasive and unsupervised approach based on the use of electrical impedance tomography (EIT) is presented. The approach was evaluated in three healthy subjects undergoing hypoxia-induced variations in PAP. A timing parameter — physiologically linked to the PAP via the so-called pulse wave velocity principle — was automatically extracted from the EIT data. Reference systolic PAP estimates were obtained by echocardiography. Strong correlation scores (r e [0.844, 0.990]) were found between the EIT-derived parameter and the reference PAP, thereby suggesting the validity of the proposed approach. If confirmed in larger datasets, these findings could open the way for a new branch of fully non-invasive hemodynamic monitors for patients with pulmonary hypertension.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28269217