Abstract:
Development of a neural interface that can be implanted without risky, open brain surgery will increase the safety and viability of chronic neural recording arrays. We ha...Show MoreMetadata
Abstract:
Development of a neural interface that can be implanted without risky, open brain surgery will increase the safety and viability of chronic neural recording arrays. We have developed a minimally invasive surgical procedure and an endovascular electrode-array that can be delivered to overlie the cortex through blood vessels. Here, we describe feasibility of the endovascular interface through electrode viability, recording potential and safety. Electrochemical impedance spectroscopy demonstrated that electrode impedance was stable over 91 days and low frequency phase could be used to infer electrode incorporation into the vessel wall. Baseline neural recording were used to identify the maximum bandwidth of the neural interface, which remained stable around 193 Hz for six months. Cross-sectional areas of the implanted vessels were non-destructively measured using the Australian Synchrotron. There was no case of occlusion observed in any of the implanted animals. This work demonstrates the feasibility of an endovascular neural interface to safely and efficaciously record neural information over a chronic time course.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28269267