Loading [MathJax]/extensions/MathMenu.js
Kernel temporal enhancement approach for LORETA source reconstruction using EEG data | IEEE Conference Publication | IEEE Xplore

Kernel temporal enhancement approach for LORETA source reconstruction using EEG data


Abstract:

Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse probl...Show More

Abstract:

Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:

ISSN Information:

PubMed ID: 28269283
Conference Location: Orlando, FL, USA

Contact IEEE to Subscribe

References

References is not available for this document.