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ABSTRACT

The step-down unit (SDU) is a high-acuity hospital
environment, to which patients may be sent after dis-
charge from the intensive care unit (ICU). About 1-
in-7 patients will deteriorate in the SDU and require
emergency readmission to the ICU. Upon readmission,
these patients experience significantly higher mortality
risks and lengths of stay. Gaussian process regression
(GPR) models are proposed as a flexible, principled,
probabilistic method to address the clinical need to
monitor continuously patient time-series of vital signs
acquired in the SDU. The proposed GPR models focus
on the robust forecasting of patient heart rate time-
series and on the early detection of patient deterioration.
The proposed methods are tested with an SDU data
set from the University of Pittsburgh Medical Center,
comprising 333 patients, 59 of whom had at least one
verified clinical emergency event. Results suggest that
GPR-based heart rate monitoring provides superior ad-
vanced warning of deterioration compared to the current
clinical practice of rules-based thresholding, and slightly
outperforms the current state-of-the-art kernel density
method, which requires 4 additional vital sign features.

I. CLINICAL SETTING

An SDU manages the recovery of patients after ICU
discharge while reducing the staff-intensive burden re-
quired for acutely ill ICU entrants. SDU patients are
generally of a more stable condition than those in the
ICU and therefore the SDU has a reduced nurse-to-
patient ratio (1 nurse to 4-6 patients) compared to the
ICU (1 nurse to 1-2 patients) [1]. Studies across different
hospitals have estimated ICU readmission-rates of 4.2%
- 7.6% [2], 8.8% [3], and 0%-18.3% [4]. Readmission
to the ICU has significant clinical implications: mortality
rates for readmitted ICU patients have been estimated at
40.2% [3] and 24.7% [2] (in contrast to 4.0% mortality
of patients who were not readmitted). These high levels
of mortality motivate the use of principled methods for
identifying, and ideally predicting, physiological deteri-
oration.

Current clinical practice involves manual calculation
of rule-based risk scores, and simple thresholding on

the absolute values of the vital signs. These heuristic
thresholds are usually set according to clinical experi-
ence concerning the global population of stable patients.
Empirical methods include the use of Extreme Value
Theory (EVT) [5], or a Parzen window kernel density
estimate (KDE) [6] over the vital signs of a population
of healthy patients. The latter methods make strong, un-
realistic assumptions about the nature of vital-sign data;
notably, that the time-series data are independent and
identically distributed (i.i.d.), which therefore ignores
vital sign dynamics.

The GPR solution discussed in this paper provides
an alternative approach to continuous monitoring that
incorporates knowledge of the generative physiology and
which models the dynamics of the time-series of the
vital-signs. Prior work on GPR monitoring of vital signs
can be found in [7], [8], [9].

II. DATA

The data set used by this work comprises 333 adult
patients in the surgical-trauma SDU at the University
of Pittsburgh Medical Center Presbyterian Hospital. The
patients were recruited in phase 1 of a 3-phase trial,
approved by Institutional Review Boards, to optimise
and validate the efficacy of the KDE-based monitoring
system described in [6]. Phase 1 started in November
of 2006 and lasted eight weeks. Patient heart rate (HR),
respiratory rate (RR), blood-oxygen saturation (SpO2),
and systolic and diastolic blood pressure (SBP and
DBP) were continuously recorded for the duration of
stay. These data sets are not “open” data sets due
to patient confidentiality. Over the course of phase 1
(for all 333 patients), the medical staff made only 7
clinical emergency calls based on extremal vital signs. In
retrospect, clinicians labelled 112 clinical emergencies
(C-events) when reviewing the time-series data of all
patients, and those 112 C-events occurred for 59 patients.
The presence of 112 emergency C-events when only 7
were called in practice supports the understanding that
continuous monitoring can add value to the intermittent
observation of nursing staff. The annotated C-events
each had an associated start-time, stop-time, and primary
cause.



Non-C patients (i.e. those patients who had no C-
events) were divided into 3 groups of 89 patients, and
with similarly-distributed lengths of stay. Two groups
were reserved to explore modeling choices for this
work. The remaining group of non-C patients served as
negative-control cases, to use in conjunction with the
59 C-patients to determine the efficacy of the proposed
methods for detecting physiological deterioration. Six
non-C patients had insufficient data for consideration.

III. GAUSSIAN PROCESS REGRESSION

For a useful introduction to GPR the reader is re-
ferred to [10]. A Gaussian-distributed random variable
(RV), y ∼ N(µ, σ2), can be generalised to a mul-
tivariate normal (MVN) distribution over n-variables,
yn×1 ∼MVN(µn×1,Σn×n), in which µ is the vector
of respective means for each element in y, and Σ is the
covariance matrix, describing the pairwise correlation of
each element in y. GPR is a tool to estimate the unknown
regression function y = f(x), given a set of training
data {xi, yi}i=1..n, without recourse to an explicit pa-
rameterisation of f(x). This is achieved by modeling
f(x) as a draw from a distribution over functions, that
is, f(x) ∼ GP (µ(x), k(x,x′)). Analogous to the MVN,
µ(x) is the mean of the functional distribution evaluated
at x, and k(x,x′) is a positive-semi definite function
outputting the pairwise covariances of y and y′ (in the
range) between the elements x and x′ (in the domain).
As a finite draw from the range of f(x), the data y
follow an n-dimensional MVN distribution, described
above, with the elements of µ and Σ determined by
the mean function and covariance function.

In the absence of prior information, the mean-vector
µ(x) = 0 (via detrending the y values if neces-
sary). A commonly used covariance function is the
radial basis function (RBF) with additive white noise

(WN):
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where d = |x− x′|, δ is the Kroenecker delta function,
which is 1 when the inputs are identical. This function
encodes that Cov(y,y′), decreases with separation in the
domain. The hyperparameter h governs the magnitude
of covariance, λ modulates the exponential decay of
covariance, and σ2

n describes additive Gaussian noise,
N(0, σ2

n) that corrupts each measurement of y. The
RBF encodes an infinitely differentiable function, which
may be inappropriate to model functions with sharp
discontinuities.

To fit a GPR model to the data, it is necessary
either to estimate, or integrate over, the values of the
hyperparameters. The log marginal likelihood (LML)
is log p(y|x, h, λ, σ) = − 1

2yTΣ−1y − 1
2 log |Σ| −

n
2 log(2π).

Prior knowledge of the distribution of the hyperpa-
rameters can be incorporated into the LML. A maxi-
mum a posteriori estimate can be obtained by optimiz-
ing the LML with respect to the hyperparameters. A
more “fully Bayesian” alternative is to integrate across
a range of hyperparameter values, e.g. sampling via
Markov Chair Monte Carlo (MCMC). Conditional on
the hyperparameters and the training data {x,y}, the
distribution of unknown targets y∗ at locations x∗ are
also MVN with mean E[y∗] = Σ∗Σ−1y, and variance
V ar[y∗] = Σ∗∗−Σ∗Σ

−1Σ∗T , in which Σ∗ = k(x∗,x),
and Σ∗∗ = k(x∗,x∗).

IV. GPR FORECASTING

The GPR kernel and priors over the hyperparameters
were selected to forecast future HR values, given a
window of observed HR values. HR measurements were
acquired at fs = 1

3 Hz. As shown in figure 1, observed
values within the most recent hour were down-sampled
to fs = 1

60 Hz, measurements from 1-7 hours previous
were down-sampled at fs = 1

120 Hz. To improve the pre-
cision of forecasting performance, measurements within
forecast windows were not down-sampled. GPs were
fitted to training data using the GPStuff implementation
[11] of Elliptical Slice Sampling (ESS) MCMC [12] with
500 samples and with a 30-sample burn-in. ESS is a
popular method for sampling the posterior distribution
of a distribution based on a combination of MVN RVs
with highly-correlated hyperparameters. Forecast perfor-
mance was assessed by the likelihood of the true values,
given the posterior GP, N(y∗|E[y∗, V ar[y∗]), described
above. Covariance functions of varying complexity and
priors over the hyperparameters were assessed according
to forecast windows of 15, 30, 45, and 60 minutes
beyond the interval of the training window. Training
data comprised time series from a representative set of
“normal” patient data, provided by the first two of the
three groups of non-C patients.

The most robust kernel was found to be
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The kernel above encodes the prior belief that longer

trends (on the order of hours) are governed by the
smooth RBF kernel, while minutely variations in HR are
governed by a twice-differentiable Matérn(5/2) kernel.
Measurements are corrupted by noise with a Gaussian
distribution N(0, σ2

n). The priors placed over the hy-



Figure 1. Training and forecast windows for GPR forecasting. Data in
the most recently observed hour is sampled at a higher rate than earlier
data. Green observations were removed during down-sampling leaving
only blue observations with which to fit the posterior GP. The posterior
GPR’s latent mean and 95% CI are shown in red, along with the 95%
CI of log HR measurements. A GPR forecast from the training window
is in magenta. Black observations are the unseen forecast window, and
seem to follow the trend of the forecast in this example.

perparameters were p(lnh21) ∝ p(lnh21) ∝ p(lnλ1) ∝
p(lnσ2

n) ∝ 1 and p(sqrt(λ2)) ∝ 1.

V. GPR FOR STEP-CHANGE DETECTION

A physiological “step-change” describes a marked
discontinuity of new observations from previous obser-
vations. This concept has a useful application in novelty
detection: if previous observations are the product of
a “normal” generative process, then a departure from
the expectations of the previous observations could be a
departure from “normality”. This is illustrated in figure
2, in which the posterior GP, fitted to the training
window, produces a forecast of future measurements. If
the observed measurements deviate sufficiently from the
forecast, then an alarm can be generated. This method
is a threshold on forecast-error, with the attractive hy-
pothesis that deteriorating physiology may correspond
to erratic time-series data and, hence, occur with low
likelihood with respect to the forecast from “normal”
conditions. The accuracy of a forecast can be described
in terms of the original measurement units, likelihood,
or via information theoretic measures.

VI. EXPERIMENTAL DESIGN

Continuous monitoring was performed on all 59 C-
patients (positive controls), and 89 non-C-patients (nega-
tive controls). A GP was fit to a 7-hour window of patient
data, advanced every 5 minutes, which would be fea-
sible for real-time monitoring, given the computational
constraints of the clinical setting. Each newly-collected
data point is compared to the posterior distribution to
obtain a likelihood, given the posterior GP. Low mean
log-likelihoods within a forecast window suggest a step-
change. An alarm threshold [-20, 3] was set on the mean
of the log-likelihoods for data in the forecast window.
Lower thresholds produce a more sensitive alarm. To

Figure 2. A step-change is detected by a marked divergence from the
expectations of the posterior GP. Two time-series are presented, each
with a posterior GP of the training window (red), and the forecast
window (magenta). Solid lines (-) are the 95% CI of the latent mean,
and dashed lines (- -) are 95% CI of the log HR measurements. The
measurements in (a) exhibit precipitous (relative) tachycardia shortly
after the forecast. The new observations fall outside the 95% CI so it
is likely that that patient’s physiology has undergone a rapid change.
Notably, this deterioration is unlikely to be detected by thresholding
or KDE methods because all measurements remain within clinically-
common HR ranges. It is the time-series nature that makes these
measurements unusual. In (b) the HR measurements remain well within
the expected range of the posterior GP. The data in the forecast
window are described well by the distribution of the posterior GP.
The new measurements, therefore, do not suggest a change from the
data generative process of the training window.

detect rapid fluctuations in HR, a forecast window of
2 minutes was used. (Results were found to be similar
when the choice in the length of the forecast window
was varied from 1-25 minutes.)

The outcome of interest is the accurate and early
detection of C-events. In non-C patients, any alarm is
considered a false positive. The false positive rate (FPR)
is calculated to be the total number of false positives,
divided by the total number of predictions performed
on non-C patients (approximately 5500 in total). Since
physiology may have been affected by clinical interven-
tion after the first C-event, only the first C-event was
considered for each patient. A credible interval for a true
alarm was deemed to be from 8 hours prior until 2 hours
after the C-event. The time of early warning (TEW) for
each patient was calculated as described in figure 3.

VII. RESULTS

The GPR step-change detector provided a significant
improvement over simple thresholding and was compara-
ble to the KDE method described in [6] (figure 4). Within
a clinically-viable range of FPR values (0%-15%), a
patient monitored by the GPR step-change detector



Figure 3. Timeline for TEW calculation for each C-patient. The
timestamp of the first C-event is centered at t = 0, and the credible
period for a clinical alarm is t = [−2, 8] hours. Any clinical alarm
outside of this credible region (e.g., alarm A or D above) was counted
neither as an early warning nor a false positive (see the main text). The
TEW for a C-patient was the first alarm to occur within the credible
period; e.g., if alarms B and C both occurred, the TEW would be 4
hours. If no clinical alarm occurred in the 10-hour credible region, then
the TEW value was right-censored at -2 for analytical convenience.
Note that alarms for C-patients occurring outside this interval around
an event were not deemed to be false-positive, because they could be
associated with the event. False-positive alarms were defined using
only the non-C patients, as described.

would have 6-8 hours of additional advance warning
in the event of deterioration, compared to the sim-
ple thresholding technique in current clinical practice.
When accepting an FPR of 10%, the GPR-based method
increased median TEW by over 6 hours. Two-thirds
of patients could expect a longer advanced warning
than the median patient under the simple thresholding
technique. The KDE method, described in [6], making
use of four vital signs in addition to HR, performed
comparably to the GPR-based method for FPR 0%-5%,
and had lower and more varied TEW for FPR 5%-30%.
Notably, this performance includes all C-patients, the
majority of whom did not have a clinically annotated HR
emergency. This suggests the reality that deterioration
can be manifest in several vital signs simultaneously.
The GPR demonstrates the benefit of making fuller
use of the information contained within a single vital
sign, in that it outperforms a full 5-dimensional KDE
using only a single vital, and provides a probabilistic
means of performing forecasting without making the
i.i.d. assumption of the KDE. The inclusion of further
vital signs, and modelling the time-series correlation
structure between them, offers the potential to produce
significant advantages over the current state-of-the-art.

VIII. FUTURE WORK

The next step is to include further vital signs (RR,
SpO2, SBP, and DBP) into a multitask GP framework.
The inclusion of additional physiological data offers
additional potential to improve the detection of dete-
rioration. To the extent that vital signs are correlated
and provide further context, benign step-changes may
become more predictable, and adverse step-changes may
be more apparent.
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