Abstract:
Currently, a challenge in electrical stimulation for epiretinal prostheses is the avoidance of stimulation of axons of passage in the nerve fiber layer that originate fro...Show MoreMetadata
Abstract:
Currently, a challenge in electrical stimulation for epiretinal prostheses is the avoidance of stimulation of axons of passage in the nerve fiber layer that originate from distant regions of the ganglion cell layer. A computational model of extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue is developed using a modified version of the standard volume conductor model, known as the cellular composite model, embedded in a four layer model of the retina. Simulations are conducted to investigate the interaction of neural tissue orientation, electrode placement, and stimulation pulse duration and amplitude. Using appropriate multiple electrode configurations and higher frequency stimulation, preferential activation of the axon initial segment is shown to be possible for a range of realistic electrode-retina separation distances. These results establish a quantitative relationship between the time-course of stimulation and physical properties of the tissue, such as fiber orientation.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28269490