Abstract:
Hemispheric stroke survivors tend to have persistent motor impairments, with muscle weakness and muscle spasticity observed concurrently in the affected muscles. The obje...Show MoreMetadata
Abstract:
Hemispheric stroke survivors tend to have persistent motor impairments, with muscle weakness and muscle spasticity observed concurrently in the affected muscles. The objective of this preliminary study was to identify whether impairment of muscle force transmission could contribute to weakness in spastic-paretic muscles of chronic stroke survivors. To characterize the efficiency of the transmission of muscle forces to the tendon, we activated biceps brachii muscle electrically by stimulating the musculocutaneous nerve with maximum current. The ratio between the elicited maximum twitch force amplitude and the maximum M-wave peak-peak amplitude was calculated as a measure of the efficiency of force transmission. Based on the preliminary results of two stroke survivors, we show that the Force/M-wave ratio was reduced in the affected biceps brachii muscles in comparison with the contralateral muscles, indicating a potential impairment in the muscle force transmission in the affected muscles. Our findings suggest that disrupted muscle force transmission to the tendon could contribute to weakness in spastic muscles of chronic stroke survivors.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28269644