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Dispersion Entropy for the Analysis of Resting-state MEG Regularity in
Alzheimer’s Disease

Hamed Azami1,∗, Student Member, IEEE, Mostafa Rostaghi2, Alberto Fernández3,
and Javier Escudero1, Member, IEEE

Abstract— Alzheimer’s disease (AD) is a progressive degen-
erative brain disorder affecting memory, thinking, behaviour
and emotion. It is the most common form of dementia and
a big social problem in western societies. The analysis of
brain activity may help to diagnose this disease. Changes in
entropy methods have been reported useful in research studies
to characterize AD. We have recently proposed dispersion
entropy (DisEn) as a very fast and powerful tool to quantify the
irregularity of time series. The aim of this paper is to evaluate
the ability of DisEn, in comparison with fuzzy entropy (FuzEn),
sample entropy (SampEn), and permutation entropy (PerEn),
to discriminate 36 AD patients from 26 elderly control subjects
using resting-state magnetoencephalogram (MEG) signals. The
results obtained by DisEn, FuzEn, and SampEn, unlike PerEn,
show that the AD patients’ signals are more regular than
controls’ time series. The p-values obtained by DisEn, FuzEn,
SampEn, and PerEn based methods demonstrate the superiority
of DisEn over PerEn, SampEn, and PerEn. Moreover, the
computation time for the newly proposed DisEn-based method
is noticeably less than for the FuzEn, SampEn, and PerEn based
approaches.

I. INTRODUCTION

Alzheimer’s disease (AD), the most common type of de-
mentia, is a neurodegenerative disorder characterized by cog-
nitive deficits, disorders of daily activities, and behavioural
disturbances [1] [2]. AD is clinically defined as a slowly
progressive impairment of mental functions whose course
lasts several years before the death. AD usually starts by
destroying neurons responsible for storing and retrieving
memories. Next, it affects the brain areas involved in lan-
guage and reasoning. Finally, other brain areas are atrophied
[1] [3].

Changes in electrophysiological time series, such as
magnetoencephalogram (MEG) and electroencephalogram
(EEG), have been broadly used to characterize AD in the
recent years [4]–[8]. MEG is a non-invasive technique al-
lowing to record the magnetic fields generated by the brain
neuronal activity. Both the MEG and EEG signals have high
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temporal resolution. MEG signals do not depend on any
reference point and they are less affected by extra-cerebral
tissues than EEGs [9]. Changes in MEG and EEG can be
detected by nonlinear dynamical techniques such as fractal
dimension, Lempel-Ziv complexity, and entropy methods [7]
[10] [11].

Entropy is a powerful and widely-used measure to quantify
the irregularity or uncertainty of a time series [12]. Given
a distribution s with N states s1, s2, ..., sN , the entropy
of the distribution is −

∑N
k=1 Pr{sk} log(Pr{sk}), where

Pr{sk} is the probability that s is in the state {sk}. In
fact, entropy is a feature of the probability distribution Pr.
When all states are equally likely, the maximum entropy is
achieved. In contrast, if one state is certain and the others are
impossible, the minimum entropy occurs [13]. Based on the
previous concept, several methods, such as sample entropy
(SampEn) [12] and permutation entropy (PerEn) [14] have
been introduced.

SampEn denotes the negative natural logarithm of the
conditional probability that a time series of length N , having
repeated itself within a tolerance r for m sample points,
will also repeat for m + 1 sample points [12]. Details
of the method can be found in [12]. SampEn has been
extensively used to calculate the irregularity of time series
[15]. SampEn was employed for characterizing EEG signals
in AD, although the differences between AD patients and
controls were not significant in the majority of channels [16].

Another well-known irregularity measure is PerEn [14].
This entropy is based on the permutation patterns or the
order relations of the amplitude values of a time series.
For more information about its algorithm, please refer to
[14]. PerEn has received much attention in recent years
because of being conceptually simple, computationally fast,
and structurally robust [17]. PerEn and SampEn have various
uses in biomedical signal processing study, such as epilepsy
and cognitive neuroscience [15] [17].

One of the most important shortcomings of the SampEn
is that it ignores the magnitude of the distance between two
composite delay vectors that is larger than a defined threshold
[12]. To alleviate this problem, fuzzy entropy (FuzEn) was
proposed to consider every distance between two composite
delay vectors [18]. Details of the FuzEn algorithm can be
found in [18]. FuzEn, which is based on the fuzzy theory and
SampEn, is more stable and reliable than SampEn, especially
for short signals. However, FuzEn and SampEn, though
powerful, are not fast enough for some real-time applications
and PerEn fails to account for the equal amplitude values of



embedding vectors and the differences between amplitude
values [19].

To overcome the aforementioned shortcomings, we have
very recently proposed a new, fast, and powerful measure,
termed dispersion entropy (DisEn) [20]. We gained insight
into the dependency of DisEn on a number of straight-
forward signal processing concepts via a set of synthetic
time series. We also used the DisEn method for three real
publicly-available datasets. The results using both synthetic
and real-valued time series demonstrated the DisEn method
significantly outperforms PerEn. The results showed that
DisEn is sensitive to changes in frequency, simultaneous
amplitude and frequency, noise power, and noise bandwidth.
Furthermore, the running time of DisEn was considerably
less than that of both the SampEn and PerEn [20].

In this paper, we employ DisEn, FuzEn, SampEn, and
PerEn to investigate the MEG background activity in patients
with AD and in control subjects with the objective of com-
paring DisEn with the already established entropy metrics.

II. MATERIALS

A. Subject Groups
We considered 36 AD patients and 26 age-matched con-

trols (CON). All 62 subjects gave their informed agreement
for the research, which was approved by the local ethics
committee. Diagnoses were confirmed with thorough tests.
To screen the cognitive status, the mini-mental state exami-
nation (MMSE) was utilized. The 36 AD patients (12 men
and 24 women; age = 74.06± 6.95 years, mean ± standard
deviation (SD); MMSE score = 18.06 ± 3.36, mean ± SD)
met the criteria for probable AD according to the guidelines
of the NINCDS-ADRDA [21]. The CON group was formed
by 26 subjects (9 men and 17 women; age = 71.77 ± 6.38
years, mean ± SD; MMSE score = 28.88 ± 1.18 (mean ±
SD)). The difference in age between two groups was not
significant (p-value = 0.1911, student’s t-test) [4].

B. MEG Recordings
Resting state MEG recordings were obtained with a 148-

channel whole-head magnetometer (MAGNES 2500 WH, 4D
Neuroimaging) in a magnetically shielded room at the MEG
Centre Dr. Perez-Modrego (Spain). The subjects lied on a
hospital bed in a relaxed state with eyes closed. They were
asked to avoid sleeping and not to move head and eyes. For
each participant, five minutes of MEG resting state activity
were recorded at a sampling frequency (fs) of 169.54Hz. The
signals were divided into segments of 10s (1695 samples)
and visually inspected using an automated thresholding pro-
cedure to discard segments significantly contaminated with
artifacts. The effect of cardiac artifact was reduced from
the recordings using a constrained blind source separation
procedure [22]. Finally, a bandpass FIR filter with cut-offs
at 1.5Hz and 40Hz was employed for the data.

III. DISPERSION ENTROPY

Assume we have a univariate time series of length N :
x = {x1, x2, ..., xN}. The algorithm of DisEn includes four
main steps:

1) First, xj(j = 1, 2, ..., N) are mapped to c classes
with integer indices from 1 to c. To this end, there are
a number of linear and nonlinear approaches. Although a
linear mapping algorithm is the fastest one, when maximum
or minimum values are noticeably larger or smaller than
the mean/median value of the signal, the majority of xi are
assigned to only few classes. Thus, the normal cumulative
distribution function (NCDF) is employed to map x into
y = {y1, y2, ..., yN} from 0 to 1. Then, we use a linear
algorithm to assign each yi to an integer from 1 to c.
Note that, although this part is linear, the whole mapping
approach is non-linear because of the use of the NCDF.
To do so, for each member of the mapped signal, we use
zcj = round(c.yj + 0.5), where zcj denotes the jth member
of the classified time series and rounding involves either
increasing or decreasing a number to the next digit [20].

2) Time series zm,ci are made with embedding dimension
m and time delay d according to zm,ci = {zci , zci+d,+... +
zci+(m−1)d}, i = 1, 2, ..., N − (m − 1)d [12] [14] [20].
Each time series zm,ci is mapped to a dispersion pattern
πv0v1...vm−1

where zci = v0 ,zci+d = v1 ,..., zci+(m−1)d =
vm−1. The number of possible dispersion patterns that can
be assigned to each time series zm,ci is equal to cm, since
the signal has m members and each member can be one of
the integers from 1 to c [20].

3) For each cm potential dispersion patterns πv0v1...vm−1
,

relative frequency is obtained as follows:

p(πv0v1...vm−1
) =

Number{i
∣∣i ≤ N − (m− 1)d, zm,ci has type πv0v1...vm−1

}
N − (m− 1)d

(1)

In fact, p(πv0v1...vm−1
) shows the number of dispersion

patterns of πv0v1...vm−1
that is assigned to zm,ci , divided

by the total number of embedded signals with embedding
dimension m.

4) Finally, based on the Shannon’s definition of entropy,
the DisEn value with embedding dimension m, time delay
d, and the number of classes c, is calculated as follows:

DisEn(x,m, c, d) =

−
cm∑
π=1

p(πv0v1...vm−1
). ln

(
p(πv0v1...vm−1

)
) (2)

When all possible dispersion patterns have equal proba-
bility value, the highest value of DisEn is obtained, which
has a value of ln(cm). In contrast, if there is only one
p(πv0v1...vm−1

) different from zero, which demonstrates a
completely regular/predictable time series, the smallest value
of DisEn is obtained [20].

In the DisEn algorithm, it is needed to neither sort the
amplitude values of each embedding vector nor calculate
every distance between any two composite delay vectors with
embedding dimensions m and m+1. This makes DisEn con-
siderably faster than PerEn and SampEn. DisEn overcomes



the problem of equal values for embedding vectors obtained
by the PerEn. Finally, DisEn is relatively insensitive to noise,
because a small change in amplitude value will not vary the
class label of the value [20].

IV. RESULTS AND DISCUSSIONS

DisEn, FuzEn, SampEn, and PerEn were applied to all
148 MEG channels to quantify the signal irregularity. For
each method, the box plot of the results averaged over all
channels are shown in Fig. 1. For FuzEn, SampEn and DisEn,
unlike PerEn, the AD patients’ signals have smaller average
of entropy values in comparison with controls’ time series.
This fact is in agreement with [5] [6] [8] [7]. In contrast,
the PerEn-based results are very similar for both groups. A
paired student’s t-test was also used to assess the statistical
differences between the DisEn/FuzEn/SampEn/PerEn values
for AD patients versus controls. We adjusted the false discov-
ery rate (FDR) independently for each entropy method. The
adjusted p-values for DisEn, FuzEn, SampEn, and PerEn are
about 0.014, 0.253, 0.31, and 0.95, respectively. As expected
theoretically [18], FuzEn leads to lower adjusted p-values in
comparison with SampEn and PerEn. The best method in
terms of adjusted p-values is DisEn.

In this paper, the simulations have been carried out using
a PC with Intel (R) Xeon (R) CPU, E5420, 2.5 GHz and
8-GB RAM by MATLAB R2010a. The computation time
of the DisEn, FuzEn, SampEn, and PerEn for each channel
is approximately 0.054 s, 0.298 s, 0.266 s, and 0.221 s,
respectively. This shows the importance of DisEn for real-
time applications.

In practical uses, the embedding dimension of PerEn,
chosen based on [17] [23], is larger than the m for SampEn,
FuzEn, and DisEn. This fact causes the computation time
of PerEn is not significantly lower than that of SampEn and
FuzEn. In this article, the parameters, chosen according to
[12] [17] [20] [23], are as follows: I) the time delay for all
approaches was 1, II) the embedding dimension for FuzEn,
SampEn, DisEn, and PerEn respectively were 2, 2, 3, and
5, III) the tolerance r was 0.2 of the SD of each signal for
SampEn and FuzEn, and IV) the number of classes for DisEn
was 5.

For each channel, a paired student’s t-test was also em-
ployed to evaluate the statistical differences between the
DisEn/FuzEn/SampEn/PerEn values for AD patients versus
controls. We adjusted the FDR independently for each en-
tropy algorithm. The adjusted p-values obtained by DisEn,
FuzEn, SampEn, and PerEn are respectively shown in Fig.
2(a)-(d) in a logarithmically scale. The adjusted p-values for
DisEn, FuzEn, SampEn, and PerEn change from about 0.006
to 0.114, 0.098 to 0.86, 0.16 to 0.92, and 0.92 to 1, in
that order. As expected theoretically [18], FuzEn leads to
lower adjusted p-values in comparison with SampEn and
PerEn. The best algorithm in terms of adjusted p-values
is DisEn. Unlike PerEn, FuzEn, and SampEn, DisEn leads
to significant differences for the majority of channels. This
fact shows the superiority of the DisEn over the FuzEn,

PerEn and SampEn methods in terms of adjusted p values
in addition to computation time.

In future work, we will investigate the dependency be-
tween the threshold r for SmpEn/FuzEn and the number of
classes c for DisEn. Moreover, we intend to consider different
values of c and m for the DisEn method.
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Fig. 1: Boxplots for the DisEn, FuzEn, SampEn, and PerEn for
control subjects and AD patients.

V. CONCLUSIONS

We have investigated the irregularity of the resting-state
MEG signals in controls and patients with AD by the use of
DisEn as a new entropy measure, in comparison with FuzEn,
SampEn and PerEn. The results have shown PerEn cannot
discriminate the two groups. However, FuzEn, SampEn and
DisEn based methods have shown the control subjects have
more irregular MEG activity than AD patients. The smallest
adjusted p-values for AD patients vs. controls have been
achieved by the DisEn method and the computation time
of the DisEn has been the lowest. Our results indicate that
DisEn is a powerful and fast new entropy measure suitable
for quantifying biomedical time series.
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