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Abstract— We study in this work the feasibility of early
prediction of hand movement based on sEMG signals to
overcome the time delay issue of the conventional classification.
Opposed to the classification task, the objective of the early
prediction task is to predict a hand movement that is going
to occur in the future given the information up to the current
time point. The ability of early prediction may allow a hand
prosthesis control system to compensate for the time delay and,
as a result, improve the usability. Experimental results on the
Ninapro database show that we can predict up to 300 ms ahead
in the future while the prediction accuracy remains very close to
that of the standard classification, i.e. it is just marginally lower.
Furthermore, historical data prior the current time window is
shown very important to improve performance, not only for
the prediction but also the classification task.

I. INTRODUCTION

Surface electromyogram (sEMG) based hand movement
recognition is a key element in upper limb prostheses [1],
[2], [3]. The main goal of those prostheses is to restore most
of the functionalities of a human hand as well as to simplify
daily routine for an amputee. Consequently, a variety of hand
motions as well as an intuitive usage of the prostheses have
to be enabled.

Most of previous works in the field of control systems of
prostheses focused on classifying hand movements during
data acquisition [4], [5], [6], [7]. They shared the common
approach to perform the classification task. Features are first
extracted for a segment of the sEMG signal around the
current time point. The corresponding movement is then
determined by a pre-trained classifier given the extracted
features. The classification task has been widely adopted
due to its simplicity. However, we argue that this scheme
causes a significant problem, i.e. time delay, which results
in reduced responsiveness of the control system, and subse-
quently, downgrades the naturalness of the hand movements.
There are two factors contributing to this time delay. First,
in order to extract the features, a context window around
the current time point of the sEMG signal is required. That
is, the system needs to wait for a duration corresponding to
half of this window for feature extraction. The second factor
is the time needed for data acquisition, feature extraction,
and classification. Furthermore, considering the classification
task, one also is confronted with the unavoidable trade-off
problem between the window length and the classification.
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Fig. 1. Illustration of (a) the hand movement classification, (b) early
prediction, and (c) early prediction with history data. Windows with shaded
background are those used for classification/detection while arrows denote
the time points of the target windows.

As shown by Smith et al. [8], a larger window size will lead
to a better classification accuracy. Therefore, to guarantee
a good classification performance for reliable control, the
window length needs to be sufficiently large. This makes the
problem of time delay even worse.

In this work, instead of classification, we study the early
prediction of hand movements. By early prediction, we aim
at determining the label for a segment in the future using
information of the sEMG signal up to the current time as
shown in Fig. 1. The ability of early prediction will overcome
the time delay problem caused by the classification task since
it allows the control system to foresee the hand movements
and actively plan for controlling responses. Furthermore,
with the time delays having been compensated, it is possible
for one to enlarge the window size to extract more reliable
and complex features as well as utilize more advanced
classifiers to enhance the prediction accuracy. There is a
strong reason that makes early prediction of hand movements
feasible. Firstly, the sEMG signal is sequential by nature.
That is, there are strong dependencies between consecutive
windows, and a certain window should convey information
about the future and, therefore, should be able to tell about
their labels. Apart from the current window, earlier ones in
the past, called history in the following, can also be leveraged
to improve the accuracy of the prediction task. While the
majority of prior works focused on the classification task,
to the best of the authors knowledge, this is the first work



studying early prediction of sEMG-based hand movements.
Experiments on the Non-Invasive Adaptive Prosthetics

(NinaPro) dataset [9] show that we are able to obtain very
good accuracy with prediction up to 300 ms ahead in the
future. Furthermore, the early prediction accuracy, even with
300 ms in advance, is just marginally lower than that of
classification. On the other hand, they also show that history
plays an important role in the prediction task. Significant
improvements are seen on the prediction accuracy when
history windows are combined with the current window.

II. EARLY PREDICTION VS CLASSIFICATION OF
HAND MOVEMENTS

A. Typical Classification System

Let us assume the sEMG signal is acquired by a hand pros-
thesis control system sequentially window by window. Let
x ∈ RD denote the D-dimension feature vector representing
an sEMG window and y ∈ L with L = {1, . . . , C} represent
a label of all possible C hand movements. Furthermore, it is
assumed that a segment-wise classifier F has been learned
beforehand using the training data. The goal of the typical
system that considers the classification task is to determine
the latest hand movement as soon as a new windowed
signal is available. Formally, the classifier will perform the
following mapping:

F : xn ∈ RD 7−→ yn ∈ L, (1)

where n denotes the current time index.
When the current hand movement is determined, the

system will respond correspondingly to control the hand
prosthesis. The classification accuracy is therefore very im-
portant for reliable control. However, in order to improve the
classification, a large window size is required [8], resulting
in an increased time delay until the subsequent steps can take
place. The additional delay induced by other steps, e.g. signal
acquisition, feature extraction, and classification, needs to
be taken into account as well. In general, more complex
features and more advanced classification algorithms will
offer better accuracy at the cost of increased computational
overhead which is especially critical for this application at
hand where computational resources are scarce. Concretely,
there exist various factors deteriorating responsiveness of
the classification-based control system and one needs to
compromise in practical applications.

B. Early prediction system

Instead of determining the hand movement given the cur-
rent signal window as in the classification task, the objective
of the early prediction is to predict the hand movement of an
unseen signal window in the future. Formally, the mapping
of the prediction reads

Q : xn ∈ RD 7−→ yn+L ∈ L, (2)

where L > 0 denotes the window offset between the current
window to the target window in the future. The prediction

is accomplished by the predictor Q which can be trained in
the same manner as the classifier F in Section II-A except
that the training data needs to be constructed properly for
prediction rather than classification. Via the predictor Q, we
produce a duration so that the system knows in advance the
hand movement that is going to take place and can actively
prepare the control plan for it. As a result, we are able to
get rid of the time delay experienced with the classification
task and have a chance to make the hand movements more
responsive and natural.

In addition to the current window, we also make use
of previous windows to improve the prediction accuracy.
The feature vectors of consecutive windows are simply
concatenated to form the overall feature vector for predic-
tion. Due to the sequential nature of the sEMG signal, the
history windows prior to the current one should also carry
information about the future one and, therefore, be useful for
the prediction task although the dependency becomes weaker
with a longer offset. When H > 0 history windows prior to
the current one are taken into account, the mapping of the
prediction task becomes

Q : (xn−H ⊕ . . .⊕ xn) ∈ RD(H+1) 7−→ yn+L ∈ L. (3)

In (3), ⊕ denotes the concatenation operation. As alter-
native, one can employ a single large window which covers
both the current and H history windows. The larger window
is expected to bring up the prediction accuracy as it does
in the classification task [8]. However, we argue that the
concatenation strategy offers several advantages over the
large window strategy. First of all, since the feature vectors
have been computed for the history windows, we can avoid
the computational cost induced by feature extraction over
the long window except for the small current one. More
importantly, by concatenation we are able to encode the
temporal development of the signal which are ignored with
the global feature vector of the large window. Furthermore,
the concatenation results in higher-dimensional feature space
which enriches the signal representation.

III. EXPERIMENTS

In the experiments, we will evaluate the performance of
the early prediction of hand movements and compare it with
that of the standard classification. We also study how the
prediction performance varies with different prediction time
offsets and the influence of history data on the prediction
performance.

A. Ninapro Dataset

For evaluation of the early prediction approach, we con-
ducted the experiments on the second version of the database
from Ninapro project [7], [9]. The database includes sEMG
signals of 50 different hand movements (including rest)
for 40 abled healthy subjects. The subjects performed six
repetitions of each type of hand movement (except rest). For
signal acquisition twelve electrodes were placed around the
subjects’ forearms.



To be consent to the previous works on the dataset in [9],
we follow the same preparation steps and use the same data
splits in our experiments. Specifically, the repetitions 2 and 5
were used for evaluation while the remaining repetitions were
used as training data. The performance for both classification
and early prediction was evaluated individually for each
subject. The performance average over all subjects is finally
reported.

B. Preprocessing and Features

The processing scheme proposed by Englehart and Hud-
gins [10] was employed. The steps of this scheme include
preprocessing, segmenting the signal into windows followed
by extracting features on window level. For preprocessing
the signals were channel-wise normalized to achieve zero
mean and unit standard deviation. The necessary statistics
were calculated using train data exclusively. Afterwards, the
signals were segmented into overlapping windows of length
200 ms with 95% overlap (equivalent to 10 ms). We also
vary the overlapping degree in the experiments to study its
influence to the prediction accuracy.

A feature vector then needs to be extracted to represent
each window. Although different features can be used, we
made use of the root mean square (RMS) for this purpose.
The RMS is calculated channel-wise. For a windowed signal
s(n) of length N on a single channel the RMS can be
computed as

RMS =

√√√√ 1

N

N∑
n=1

|s(n)|2 . (4)

The RMS is arguably one of the most commonly used fea-
ture for sEMG representation. Furthermore, for the Ninapro
dataset, the RMS features alone were shown to achieve
comparable performances compared to those obtained with
combinations of different feature types (including the RMS)
while being of lower dimensionality [9].

C. Classifiers and Predictors

Any classification framework can be used to train the
classifiers and predictors in the experiments. However, our
goal is not to seek for the best algorithm for the task at
hand. Therefore, we adopted random forest classification
[11], which exhibited very good performance for the clas-
sification task on the experimental dataset [9], to train both
the classifiers and predictors. The number of trees was set
to 100.

D. Experimental Results

We show in Fig. 2 the obtained early prediction accuracies
as functions of the prediction time offset. The time offset
is counted from −100 ms which is the offset from the
center to the end of the current window. Furthermore, to
study the influence of the history, we explore different
history values H = {0, 5, 10, 15, 20}, which is equivalent
to {200, 450, 700, 950, 1200} ms of the signal. It should be
noted that with H = 0 and the time offset of −100 ms, the
setup will become the standard classification as in [9].
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Fig. 2. Early prediction accuracy (%) as a function of the prediction time
offset for different number of history windows H = {5, 10, 15, 20} with
an overlap of 95%.
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Fig. 3. Early prediction accuracy (%) with different overlapping degree of
consecutive windows. The results have been obtained with the number of
history windows H = 5.

As can be seen from Fig. 2, the prediction accuracy
gradually downgrades with the increase of the prediction
time offset. This tendency is generalized for all studied
values of H as well. This result is expected since the
temporal dependency between the current window and the
target window becomes weaker with a larger time offset.
The reduction of accuracy, however, is not significant. For
instance, even with the prediction offset time of 300 ms the
prediction accuracies are lower than those of the standard
classification only by 1.23%, 1.41%, 1.48%, 1.52%, and
1,57% with H = {0, 5, 10, 15, 20}, respectively. Practically,
given that we have compensated 400 ms for the delay, these
small accuracy drops should be accountable since the delay
could be more important than the overall accuracy for the
outstanding usability of hand prosthetic [12].

On the other hand, positive contribution of the history
data can also be seen from Fig. 2 not only for the early



prediction but also the standard classification. The evidence
is that the accuracy curves are lifted up as long as more
history windows are integrated. Average improvements of
0.08%, 0.52%, 1.11%, and 1.70% absolute are obtained for
H = {5, 10, 15, 20} compared to the case without history
(H = 0).

In order to investigate the effects of the overlapping
degree between consecutive windows, we fixed the num-
ber of history windows to H = 5 and repeated the
experiments with the overlapping degree of 95%, 75%,
50%, 25%, and 0% (corresponding to the covered times of
250, 450, 700, 950, 1200 ms). The early prediction accura-
cies obtained with different studied overlapping degrees are
shown in Fig. 3. As can be seen, the overlapping degree
is inversely proportional to the prediction accuracy as a
lower overlapping degree leads to a better performance.
More specifically, the average accuracy gains of 3.02%,
5.67%, 7.52%, 9.01% absolute are obtained with 75%, 50%,
25%, and 0% overlap compared to the original setting of
95% overlap. The possible explanations for these results are
twofold. First, with less overlapping windows, we are able
to cover a larger duration of the signal. As a result, different
levels of temporal dependency, i.e. both long-term and short-
term, are taken into account to train more reliable predictors.
Second, with the same dimensionality of the feature space
(5×12 in this case), highly overlapping windows more likely
result in strong correlations between the features which is
counter-productive for the predictor training. Reduction of
overlapping degree in this experiment can be interpreted as
a decorrelation procedure which is expected to improve the
quality of the predictors at the end. It should be emphasized
that this finding is also applied for the standard classification
setting (i.e. the prediction time offset of −100 ms). For
the sake of comparison, the best classification accuracy
obtained with our experiments (i.e. 82.06% with H = 5
and 0% window overlap) outruns that reported in [9] (i.e.
approximately 73%) by more than 9% absolute.

E. Discussion

In the experiments, we only focused on prediction for
a single future window at the offset L from the current
window n. However, as the prediction can be done for
the window at n + L, it should be practically possible to
predict contiguous hand movements for the window sequence
ranging from n+ 1 to n+ L− 1. This prediction sequence
can not only be used to prepare the control plan but also
to smooth out spurious prediction labels, for example using
median filtering. Furthermore, although we have investigated
the prediction time offset up to 300 ms, it should be possible
to extend it further. However, the prediction accuracy is
expected to level off at some time point in the future when the
link between the current window and the target one becomes
too weak for reliable prediction. These open issues are worth
further studying in the future work.

Considering the history, the character of the analysed data
is probably important for the choice of history length and
overlap of history windows. When the time covered by the

history is disproportionately large, the further information
causes no increase of the accuracy since there is no substan-
tial dependency between the past and the current movement.

IV. CONCLUSIONS

This paper has presented a preliminary study on the early
prediction of sEMG-based hand movements for hand pros-
thesis, which helps to compensate for time delays induced by
the conventional classification approach. The experimental
results on the Ninapro database revealed that while early
prediction of future hand movements is practical (up to 300
ms) the prediction accuracy is nearly as good as that of the
classification task. Furthermore, it was shown to be important
to integrate history windows prior to the current one to lever-
age different degrees of temporal dependencies to further
improve prediction performance. An average accuracy gain
of up to 9.01% absolute was obtained for the prediction task
with 5 additional nonoverlapping history windows.
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