Abstract:
The voluntary participation of the paralyzed patients is crucial for the functional electrical stimulation (FES) therapy. In this study, we developed a strategy called “E...Show MoreMetadata
Abstract:
The voluntary participation of the paralyzed patients is crucial for the functional electrical stimulation (FES) therapy. In this study, we developed a strategy called “EMG Bridge” (EMGB) for volitional control of multiple movements using FES technique. The surface electromyography (sEMG) signals of the agonist muscles were transformed to stimulation pulses with various pulse width and frequency to stimulate the target paralyzed muscles using MAV/NSS co-modulation (MNDC) algorithm we proposed recently. Motion pattern classification based on linear discriminant analysis (LDA) was included to recognize the motion status and mapping the sEMG detection channel to the corresponding stimulation channel. A prototype EMGB system was built for real-time control of four hand movements. The test results showed that the movements can be reproduced with a successful rate of 92.5±3.5%. The angle trajectory of wrist joint and metacarpal-phalangeal joint can be mimicked with a maximum cross-correlation coefficient > 0.84 and a latency less than 300 ms.
Published in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 11-15 July 2017
Date Added to IEEE Xplore: 14 September 2017
ISBN Information:
ISSN Information:
PubMed ID: 29059846