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Abstract 
Support Vector Machine (SVM) is a common classifier used 
for efficient classification with high accuracy. SVM shows 
high accuracy for classifying melanoma (skin cancer) 
clinical images within computer-aided diagnosis systems 
used by skin cancer specialists to detect melanoma early 
and save lives. We aim to develop a medical low-cost 
handheld device that runs a real-time embedded SVM-
based diagnosis system for use in primary care for early 
detection of melanoma. In this paper, an optimized SVM 
classifier is implemented onto a recent FPGA platform 
using the latest design methodology to be embedded into 
the proposed device for realizing online efficient melanoma 
detection on a single system on chip/device. The hardware 
implementation results demonstrate a high classification 
accuracy of 97.9% and a significant acceleration factor of 
26 from equivalent software implementation on an 
embedded processor, with 34% of resources utilization and 
2 watts for power consumption. Consequently, the 
implemented system meets crucial embedded systems 
constraints of high performance and low cost, resources 
utilization and power consumption, while achieving high 
classification accuracy. 
 

1. INTRODUCTION 
Melanoma is the most dangerous form of skin cancer 
worldwide with highest rates in New Zealand and 
Australia. Early diagnosis of melanoma would aid in 
reducing mortality rates as well as the treatments costs. 
Recently, skin cancer specialists are using Computer Aided 
Diagnosis (CAD) systems as a decision support tool for 
early detection of melanoma. Thus, a real-time embedded 
CAD system in the form of a low-cost handheld device 
dedicated for melanoma detection is needed in the primary 
care. However, developing such embedded system is so 
challenging because of its complicated computations. 
Field-Programmable Gate Array (FPGA) is a powerful 
parallel processing reconfigurable device that is widely 
used for achieving essential performance of embedded 
systems, while effectively utilizing hardware resources, 
offering low cost and low power consumption. 

Interestingly, FPGAs have recently demonstrated 
significant performance in various applications and 
outperform other comparable platforms [1]. Hence, FPGA 
is an ideal platform for developing a real-time embedded 
CAD system for melanoma detection with high 
performance and low cost. 

Our research group has developed software algorithms to 
implement the four stages of the CAD structure (Fig. 1), 
targeting efficient melanoma detection [2]. The final 
classification stage in the CAD structure was concluded to 
be the most compute-intensive stage, which needs 
hardware/FPGA acceleration. The Support Vector Machine 
(SVM) classifier was tested for melanoma detection and 
verified based on experimental results that shows higher 
classification accuracy compared to other tested classifiers. 
Also, SVM is a powerful supervised machine learning tool 
that demonstrates high classification accuracy for various 
applications. Therefore, this research study focuses on 
implementing and accelerating SVM onto FPGA to be 
embedded within a cost-effective handheld device running 
a CAD system for early melanoma detection. 

Different hardware implementations of SVM classifier 
exploit the parallel processing power of FPGAs for 
achieving high performance computing [3]. Some 
hardware implementations recorded relatively loss in the 
classification accuracy rate compared to software 
implementations. Most implementations are realized on old 
FPGA platforms with traditional methods. Furthermore, 
many architectures are developed without taking into 
consideration important embedded systems constraints like 
low power consumption that was measured for only a few 
numbers of previous implementations. Finally, it was 
concluded that the main challenges are the difficulty of 
meeting important embedded systems constraints of high 
performance, flexibility, scalability, and low area, cost, and 
power consumption, while reaching reliable classification 
with high accuracy. In this paper, we implement optimized 
FPGA-based SVM classifier and cascaded classifier using 
the latest platform and design methodology targeting 
melanoma detection. Experimental results demonstrate 
meeting embedded systems constraints, while achieving 
accurate classification on a single device/chip. 
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2. PROPOSED SVM DESIGN 
A. FPGA Platform and HLS Design Methodology 
The latest FPGA technology and system-design tool are 
selected for our implementation. The Xilinx “Zynq-7000 
All Programmable System on Chip (SoC)” is a recent 
FPGA platform, which simplifies the embedded system 
design and realization due to its hybrid architecture [4]. The 
hybrid structure of the Zynq SoC combines the hardware 
programmability of an FPGA as a Programmable Logic 
(PL) with an ARM Cortex-A9 dual-core as a Processing 
System (PS) in a single SoC. 

The recent version of the Xilinx “Vivado Design suite” is 
used for the design and development process. The Vivado 
suite includes the HLS tool that employs the latest UltraFast 
HLS design methodology [5]. The HLS methodology is 
discriminated by using the high-level language instead of 
the traditional hardware description language for 
programming the FPGA. By using the HLS, the hardware 
development effort and time-to-market are significantly 
reduced. 
 
B. Proposed SVM HLS IP 
This proposed design of an SVM IP is based on our 
previous implementation [6] to be extended and improved. 
The HLS design methodology is used to implement a 
binary SVM classifier as an HLS IP. The SVM IP basically 
implements the main classification function (1) that is used 
in the classification phase for classifying any new test 
instance, 𝑋, based on the sign function. The linear kernel is 
applied, which performs the complicated dot-product 
calculation between the test sample 𝑋 and each Support 
Vector (SV) as 𝑋!. The function is based on the number of 
𝑆𝑉 (as 𝑁) and it uses other parameters for the required 
calculation, 𝛼, 𝑦 and 𝑏 that are identified from the training 
phase. 
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The initial hardware/software co-design for an accelerator 
IP in [6] is to be extended in this paper to implement the 
whole function (1) to realize an optimized SVM IP running 
on the recent Zynq SoC for fast, low-cost, and reliable 
melanoma detection. Using the HLS tool, a module is 
designed in C/C++ implementing the classification 
function (1) to develop an SVM HLS IP. The proposed 
module has three main inputs as arrays and is divided into 
three functional blocks to compute the required 
calculations. 

The block diagram of the proposed IP is shown in Fig. 2. 
Three input ports are designed for the arrays, which are 
called according to its contents as SVs, Parameters, 
and 𝑋 arrays. The SVs is a 2D array that contains the 

features data of each SV. The parameters and 𝑋 are 1D 
arrays that hold 𝛼𝑦 values of each SV (and the 𝑏 value), 
and features of the test instance 𝑋 respectively. Apparently, 
the proposed design depends on both the number of SVs 
and features size to implement any SVM model. To 
simplify the design, the function calculation is divided into 
three main successive blocks. The first block “SVs 
Summation” is designed in a nested for loop (with the size 
of SVs number times features number) to compute the first 
part of the summation (accumulated array/vector Z) in the 
main function as in (2). 
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The second block “Distance Calculation” performs the dot-
product calculation between the accumulated array 𝑍 that 
outputted from the first block and the test array 𝑋 as 
in (3) to produce the classification distance value 𝐷. 
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Finally, the parameter 𝑏 (stored in the first place of 
the parameters array) is subtracted from the distance 𝐷 to 
be then classified according to the proposed sign function 
in (4) at the final block “Classification Decision” (𝑡ℎ is the 
threshold value determined through the validation phase). 
The final classification output 𝐹(𝑋) is returned through the 
control bus/interface Ctrl, which corresponds to a 
melanoma class (+1), benign/non-melanoma class (−1). 
 

𝐹(𝑋) = 𝑠𝑖𝑔𝑛(𝐷 − 	𝑏) 	= 	 >−1, 	 (𝐷 − 	𝑏) < 𝑡ℎ
1, 	 (𝐷 − 	𝑏) ≥ 𝑡ℎ   (4) 

 

 
Figure 1. The CAD system structure. 

 
Figure 2. Proposed design of the SVM HLS IP. 
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The HLS tool simplifies hardware design by assigning 
interfaces, resources, and other hardware techniques to the 
module through available various directives. The three 
input ports are each assigned as a BRAM interface 
(directive), as well, each input array is mapped to a single-
port RAM. The control bus is allocated to an AXI-lite bus, 
which controls the designed IP and data flow of the system 
through communicating with the ARM processor in the 
Zynq PS part. 

In addition, the pipelining technique is applied for each 
loop in order to improve the data throughput and latency. 
Accordingly based on the HLS synthesis results for an 
SVM model with 248 SVs and 27 features, the latency is 
reduced from 67,294 clock cycles to 8091 clock cycles, 
gaining a speedup of 8x from applying loop pipelining, 
while same number of DSPs (5) is utilized. As a 
disadvantage of gaining significant acceleration, extra FF 
and LUT resources are utilized, which reflects the well-
known trade-off between speed and area. However by using 
the modern Zynq SoC of extensive resources, low figures 
of only 17% (18941) and 36% (19308) are utilized for FFs 
and LUTs respectively, while gaining significant speed 
improvement. Consequently, the designed pipelined HLS 
IP is promising for achieving HPC, and low area, cost and 
power consumption requirements of embedded systems 
realization for enhancing melanoma detection. 

The designed HLS IP is successfully implemented and 
packed as an IP/RTL implementation by passing through 
the design flow of the HLS tool (C simulation, C synthesis, 
RTL co-simulation, RTL implementation). Then, the 
implemented HLS IP is integrated in the proposed system 
as depicted in Fig. 3 that is designed by exploiting the 
Vivado design tool to be realized on Zynq SoC. 

The ARM processor in the Zynq PS part is connected to the 
HLS IP and other used IPs/cores in the Zynq PL via the 
control bus (AXI-lite) using an AXI-interconnect IP, in 
order to control connected IPs and data flow in the system. 
Three dual-port BRAMs are instantiated to be connected to 
the HLS IP input ports on one port each and to the ARM on 
the second port using AXI-BRAM-Controller IPs. In 
addition, an AXI-Timer IP is connected to the system to 
measure the clock cycles needed by running the connected 
IPs, which is exploited for performance comparisons. 

The designed SoC in Fig. 3 is successfully implemented via 
the Vivado design tool stages (synthesis, implementation 
and bitstream generation) to be finally exported for running 
on Zynq by the help of the Software Development Kit 
(SDK) tool. A test bench (C program) is developed for 
testing and verifying the implemented classifier and run it 
on Zynq SoC. The Zynq ARM processor executes the 
developed program/application besides controlling the 
system. The data required for the three arrays inputs of the 
HLS IP is read Byte-by-Byte from three main files to be 
parsed and then written into the corresponding BRAMs. 
The files are stored in the SD card of the Zynq evaluation 
board, which hold required data for running the 
implemented SVM IP in order to classify a new test 
instance as melanoma or non-melanoma. Interestingly, any 
other trained SVM model with the same size of the 
implemented model can be easily implemented and run on 
Zynq by simply loading required data into the three main  

files. Therefore, the proposed system is promising for 
gaining scalability, flexibility, and adaptability. 
 
C. Proposed Cascaded SVM Classification 
The proposed system is a scalable IP-based design that is 
easily extended to form a multi-core architecture by adding 
more SVM IPs in a single device/SoC that could be applied 
as a cascaded classification. The cascaded classification 
architecture contains multi classification stages (classifiers) 
that are designed in a cascading structure for accelerating 
the classification task. The early stages of the cascade are 
based on simple and low-complex classifiers, where the 
majority of data are classified and finalized (as 
melanoma/positive samples), while very few data are 
passed to the latter stages of more complex classifiers to be 
finally classified and verified. 

The proposed SVM HLS IP is simplified to be used in the 
cascade. A new IP is proposed based on the designed IP 
in Fig. 2, where the first block is pre-calculated (offline on 
software) to store the value of the accumulated vector 𝑍 
(depends on trained SVM model data) in the IP as an 
internal memory. So, the new IP has a single input 
interface 𝑋 (assigned to the control bus instead of a BRAM 
interface) and consists of the two blocks, distance 
calculation and classification decision. The new IP is 
exploited to build a 2-stages cascaded classifier as in Fig. 
4 as a case study, where the first SVM IP (denoted as IP 1) 
is a melanoma-sensitive classifier (61 SVs) and the second 
IP (denoted as IP2) is a non-melanoma-sensitive classifier 
with bigger size (139 SVs). This proposed architecture 
verifies the non-melanoma samples by passing 
input 𝑋 through the second classifier in order to reduce the 
number of false negative and risk of inaccurate diagnosis 
that harm patients. However, the melanoma results from the 
first stage should be verified by a skin cancer specialist for 
further diagnosis and medication. 

 
Figure 3. The proposed system on Zynq SoC.  

 
Figure 4. The proposed 2-stages cascaded classifier. 
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Similarly, the two IPs are first implemented by the HLS 
tool to be integrated in a single system similar to the 
proposed in Fig. 4, where the two IPs are implemented in 
the Zynq PL and connected to the ARM processor. Also, an 
application is developed in the SDK tool to run the 
implemented cascaded classifier for validating online 
melanoma classification on Zynq SoC. 

This proposed IP-based multi-core architecture as a 2-
stages cascaded classification system is scalable, and could 
be easily extended in the future to implement a multi-stage 
system for higher classification accuracy and acceleration. 
Other scenarios would be applied easily to the cascaded 
architecture to comply with different applications needs 
and different sizes. 
 

3. EXPERIMENTAL RESULTS AND 
DISCUSSION 
We use Xilinx Vivado 2016.1 Design Suite to design and 
implement our proposed system on the Xilinx 
XC7Z020CLG484-1 target device of the Zynq-7 ZC702 
Evaluation Board. The “SVM-Light” is implemented for 
our SVM IP for melanoma detection. SVM-light is 
available in C language, which is widely utilized for 
classification in numerous areas and applications [7]. The 
modern UltraFast HLS design methodology is used to 
implement an SVM IP on the Zynq SoC, based on the 
binary classification algorithm and C/C++ code of the 
SVM-Light. For all used data, float data type is defined in 
the C code and mapped in hardware to the standard single-
precision floating-point format. 

By using the available SVM-Light windows application, 
the training phase is utilized for generating our binary SVM 
model offline, using the default parameters and the linear 
kernel function. A dataset of 356 clinical images (168 
melanoma and 188 benign images) collected from available 
web resources was used as input to the developed images 
preprocessing and feature extraction algorithms [2]. The 
extracted features from the image dataset were used in the 
training phase to generate a trained model for melanoma 
detection. Each image includes only a color image of one 
mole with the diameter of 6 mm or greater. Some selected 
pre-processing algorithms are applied first to the lesion 
images for hair artifact removal and then they are manually 
cropped and resized to form unified images 
of 512×512 pixels. Next, a lesion segmentation or border 
detection algorithm (interactive object recognition) is 
employed for background removal. Finally, feature 
extraction schemes based on HSV color channels are 
applied to the images for generating the features extracted 
dataset to be used for the SVM training (maximum number 
of features equals 27) [2]. The cross-validation technique is 
exploited in the training phase to achieve acceptable 
accuracy rates. Then, the generated trained model with all 
data specified from the training phase is extracted to be 
used for the hardware implementation of our embedded 
classification system. 

Two SVM models/IPs are implemented based on the 
proposed design on Zynq SoC after extracting required data 
from the training phase. First, a small-scale model “model 
1” of 61 SVs and 27 features is implemented, which is 

trained with a part of the available melanoma features 
dataset (100 melanoma and 44 benign instances). The 
trained model has a significant accuracy of 97.92% for 
melanoma detection, which shows low values of hardware 
resources utilization with only 2 watts of total power 
consumption for Zynq implementation (see Table I). The 
device statically dissipates 8% (0.17 W) of the total power 
consumption, whereas the remainder 92% (1.89 W) is 
consumed by the dynamic activity, where mostly dissipated 
by the Zynq PS component (74% (1.4 W) of total dynamic 
power) compared to other on-chip components. 
Interestingly, a significant acceleration factor of 26 is 
achieved compared to running an equivalent classification 
software processing on the embedded ARM processor at 
the Zynq PS part. A processing time of 11.46 μs (2865 
clock cycles) is achieved by using a high operating 
frequency of 250 MHz offered on the modern Zynq 
platform, while 309.36 μs (77340 clock cycles) is achieved 
for the ARM processing at the same frequency. 

Another large-scale model “model 2” is implemented that 
is trained using the whole melanoma dataset (168 
melanoma and 188 benign instances) and gives an SVM 
model of 248 SVs and 27 features with 80.85% accuracy. 
Similarly, low values of resources utilization and power 
consumption (2.65 W) (see Table I) are achieved with an 
acceleration factor of 32x and 39.3 μs processing time, 
while 1.24 ms are required by the ARM processor. 
Consequently, the proposed design is capable of meeting 
the challenging constraints of embedded systems of high 
performance, low area, cost and power in addition to 
flexibility and scalability, which is so promising to realize 
a low-cost handheld device for efficient melanoma 
detection. 

The proposed 2-stages cascaded classifier architecture 
“cascaded model” is implemented with two trained SVM 
models dividing the given dataset to generate a melanoma-
sensitive model as IP 1 with 61 SVs and 97.92% accuracy 
(100 melanoma and 44 benign dataset) and a benign-
sensitive model as IP 2 with 139 SVs and 72.51% accuracy 
(67 melanoma and 144 benign dataset). By implementing 
the cascaded classification structure with the simplified 
design of the SVM IPs, lower values of the area (except the 
total DSPs is doubled) and power consumption (1.74 W) 
are achieved over a single full SVM classifier, while 
improving the classification accuracy and speed (1.8 us) in 
addition to diagnosis verification. Also, an acceleration 
factor of 5 is achieved compared to software 
implementation of the cascaded classifier on ARM 
processor. 

The proposed hardware design successfully extends our 
previous hardware/software co-design [6] to implement the 
whole SVM classification function onto the Zynq 
PL(FPGA), while some extra resources are utilized (same 
number of DSPs) with very little increase in power 
dissipation (< 1 W). To the best of our knowledge, this is 
the first cascaded SVM classification system for melanoma 
detection on Zynq SoC with optimized hardware results 
and high classification accuracy. 

The implemented SVM models and the cascaded model are 
validated by running the developed applications (test 
benches) on the Zynq SoC for online melanoma  
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classification. Some instances are tested to be correctly 
classified by all implemented models as melanoma/benign 
class with exactly the same classification result of the 
software application. Accordingly, the classification 
accuracy level is preserved without any loss from the 
hardware implementation, in contrast to other reported 
implementations in the literature [8–11]. Interestingly, our 
implemented SVM models show high acceptable detection 
accuracy that could be used and applied in real life. More 
instances would be tested in the future in order to validate 
the classification accuracy rate of the hardware 
implemented classifiers, as well as calculating sensitivity 
and specificity rates. 

In addition, the implemented SVM classifiers are 
remarkably accelerated onto hardware to realize real-time 
embedded systems, which also outperform some existing 
implementations regarding processing time [8], [9], [12]–
[13][14]. Moreover, the implemented models are realized 
onto the recent FPGA technology of the modern Zynq SoC, 
in contrast to most existing implementations that used old 
versions of FPGAs. The Zynq implemented systems 
achieve significantly low resources utilization and power 
consumption, which demonstrate lesser values than other 
implementations in the literature [9–15]. 

Finally, our implemented models on the recent hybrid Zynq 
SoC platform achieve optimized results for the hardware 
resources utilization, power consumption, detection speed 
and processing time with high classification accuracy rates 
using real data of melanoma detection. 
 

4. CONCLUSION 

Our Zynq-based embedded systems implementation using 
UltraFast HLS design methodology is the first FPGA-based 
SVM classifier that targets melanoma classification. In 
addition, our implemented systems successfully overcome 
most challenges exit in the literature of meeting critical 
embedded systems constraints of high performance, 
flexibility, scalability, and low levels of area, cost, and 
power consumption, while reaching reliable effective 
classification with high accuracy. The presented scalable 
IP-based multicore (cascaded) architecture could be easily 
extended in the future for a multi-stages system realization 
and also could be applied as a multi-class or ensemble 
classification and for various scenarios. Finally, the 
implemented classifier is feasible to be embedded in the 
future within a fast low-cost handheld medical scanning 
device dedicated for melanoma detection or any other 
applications. 
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