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Figure 1.  Examples of segmented brain metastases from lung cancer 
origin (a) and melanoma origin (b). 

  

Abstract— Brain metastases are occasionally detected before 
diagnosing their primary site of origin. In these cases, simple 
visual examination of medical images of the metastases is not 
enough to identify the primary cancer, so an extensive 
evaluation is needed. To avoid this procedure, a radiomics 
approach on magnetic resonance (MR) images of the metastatic 
lesions is proposed to classify two of the most frequent origins 
(lung cancer and melanoma). In this study, 50 T1-weighted MR 
images of brain metastases from 30 patients were analyzed: 27 
of lung cancer and 23 of melanoma origin. A total of 43 
statistical texture features were extracted from the segmented 
lesions in 2D and 3D. Five predictive models were evaluated 
using a nested cross-validation scheme. The best classification 
results were achieved using 3D texture features for all the 
models, obtaining an average AUC > 0.9 in all cases and an 
AUC = 0.947 ± 0.067 when using the best model (naïve Bayes). 

I. INTRODUCTION 

Brain metastases are more common than primary brain 
tumors and the survival of patients diagnosed with these 
lesions is estimated to be short, usually limited to months [1]. 
The exact incidence of brain metastases is unknown: some 
studies indicate that they occur in 9–17% of patients with 
cancer but these rates are thought to be higher [2], [3]. In 
adults, the primary tumors that metastasize more often to the 
brain are those originated in lung (≥ 50%), breast (15–25%) 
and skin (melanoma) (5–20%) [1]. However, there is a small 
percentage of patients with brain metastases (2–14%) that are 
diagnosed with these lesions before detecting the location of 
the primary cancer [2]. Scarce and not recent literature 
concerning this group of patients is available and so their 
management remains unclear [4], [5]. For these patients, a 
fast, non-invasive and stable solution to identify the primary 
cancer would be required to determine the correct treatment. 

Radiomics analysis in cancer studies has been proved to 
be a successful source of information to increase the 
precision in diagnosis, to evaluate the prognosis and to 
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predict treatment response [6]. This new radiomics concept is 
referred to the analysis of medical images by an exhaustive 
extraction of features from regions of these images and the 
corresponding data mining to create predictive models to help 
in the decision support [7], [8]. Radiomics comprises several 
fields, each of them extensively researched: medical imaging, 
segmentation, feature extraction and data mining. However, 
the focus of radiomics is the feature extraction step. To this 
end, texture analysis, which defines the quantification of 
gray-level patterns within the image, has been proved to be 
an excellent source of imaging biomarkers. Traditionally, 
texture analysis has been performed in 2D, but in the past 
years the biomedical community has made an effort to extend 
the 2D texture analysis techniques to the 3D space. This is a 
consequence of the improvement in the 3D data acquisition 
and the reaching of high spatial resolutions, which allow to 
capture tissue properties more accurately [9]. Volumetric 
texture analysis has been successfully applied in several 
studies involving cancerous brain lesions [10]–[12]. 

In this work, a radiomics approach to identify the primary 
site of origin of brain metastases by means of texture analysis 
was studied. We compared the discriminative power of 2D 
and 3D texture features extracted from contrast-enhanced T1-
weighted magnetic resonance (MR) images of brain 
metastases from lung cancer and melanoma. Several 
predictive models were evaluated using this approach to 
study how different classifiers influence the results. 

II. MATERIALS AND METHODS 

A. Patients 
A total of 30 patients (22 male and 8 female; age range: 

24 – 73 years old, mean ± standard deviation: 60.30 ± 11.45 
years old) who were diagnosed with brain metastases 
between December 2013 and April 2016 were included in 
this study. Fifty initial metastatic lesions without previous 
treatment were found in these patients: 27 of lung and 23 of 
skin (melanoma) origin. Fig. 1 shows an example of both 
types of metastases. 
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Figure 2.  Structure of the nested CV process used to evaluate the different predictive models. Texture data extracted from the metastases were randomly 
divided into training and test sets N = 100 times to evaluate the model using different sets of samples and to obtain averaged results with low variance. 

This retrospective, single-center study was approved by 
the Institutional Review Board of the Fundación Instituto 
Valenciano de Oncología, and all subjects provided written 
informed consent. 

B. MRI Data 
Imaging was performed using a 1.5T MRI scanner 

(Optima MR450w; GE Medical Systems, Milwaukee, WI, 
USA). MRI protocol included three-dimensional inversion 
recovery fast spoiled gradient-echo (IR-SPGR, BRAVO) T1-
weighted images of the brain. Images were acquired without 
magnetization transfer, after intravenous administration of a 
single-dose of gadobenate dimeglumine (0.1 mmol/kg, 
MultiHance, Bracco; Milan, Italy) with a 6-min delay. 
Imaging parameters were: repetition time/echo time (TR/TE) 
of 8.5/2.2 ms; flip angle of 12º; slice thickness of 1.3 mm; 
pixel size of 0.98 × 0.98 mm2; and matrix size of 256 × 256. 

C. Image processing 
Brain metastases were segmented in 2D and in 3D using a 

software tool developed in MATLAB (R2015b; The 
MathWorks Inc., Natick, MA, USA) specifically for this 
study. Each brain metastasis was manually segmented in 2D 
from the axial slice showing the largest lesion area. To 
segment the lesion in 3D, a semiautomatic method based on 
the Chan-Vese algorithm [13] was implemented. This 
method takes the previous manually segmented lesion area as 
a reference to segment the other slices containing metastatic 
tissue. The segmentation process was supervised by an expert 
radiologist with 20 years-experience in neuroradiology. 

MR images were normalized using the μ ± 3σ method to 
enhance the differences between classes, as proposed by 
Collewet et al. [14]. 

D. Feature extraction 
To compute the features that describe the textures of the 

lesions, the MATLAB toolbox Radiomics implemented by 
Vallieres et al. [15] was used. This package allows extracting 
43 texture features from 5 different statistical methods, both 
for 2D and for 3D texture analysis. In particular, 3 features 
were extracted from the intensity histogram (first-order 

statistics) and the other 40 features were extracted from 
second-order statistical methods: 9 features derived from the 
gray-level co-occurrence matrix (GLCM), 13 from the gray-
level run-length matrix (GLRLM), 13 from the gray-level 
size zone matrix (GLSZM) and 5 from the neighborhood 
gray-tone difference matrix (NGTDM). Information of each 
method and the corresponding features can be found in [15]. 

The second-order statistical features meet the criterion of 
rotation invariability. To this end, only one GLCM, GLRLM, 
GLSZM and NGTDM per lesion was computed. For 2D 
texture analysis, the neighboring properties of pixels in the 4 
directions of the 2D space (0, 45, 90 and 135°) were averaged 
equally. For 3D texture analysis, the neighboring properties 
of voxels in the 13 directions of the 3D space were averaged 
differently to take into account discretization length 
differences [15]. To do this, the 3D regions need to be 
resampled to an isotropic voxel size; in this study, 3D regions 
were isotropically resampled to the in-plane resolution (voxel 
size = 0.98 × 0.98 × 0.98 mm3) using cubic interpolation. 

Prior to the computation of texture features, the intensity 
range of the metastatic regions was quantized to a lower 
number of gray levels (32) to improve the signal-to-noise 
ratio [16]. Finally, all texture features were standardized to 
zero mean and unit variance to avoid model computation 
being affected by the differences in the feature scales [17]. 

E. Model evaluation 
Five different predictive models were studied to evaluate 

the discrimination power of the 2D and 3D texture features: 
naïve Bayes classifier (NB), k-nearest neighbors (k-NN), 
multilayer perceptron (MLP), random forests (RF) and 
support vector machine (SVM) with linear kernel. We chose 
five common classifiers from different predictive families to 
see which of them provides the best classification accuracy 
and to verify if there are noteworthy differences between 2D 
and 3D texture analysis using different approaches. 

A nested cross-validation (CV) structure was used to 
evaluate the performance of each model (Fig. 2) without 
holding out some of the samples as an independent test set.  



  

 

Figure 3.  Profiles obtained after applying the nested CV process to the five models under analysis for 2D (a) and 3D (b) texture features. Both profiles 
show the average AUC obtained for each of the feature subsets. 

TABLE I.  COMPARISON BETWEEN MODEL PERFORMANCE 
RESULTS USING 2D AND 3D TEXTURE FEATURES 

Model 
2D texture features 3D texture features 

#Features AUC #Features AUC 

NB 25 0.846 ± 0.097 8 0.947 ± 0.067 

k-NN 19 0.890 ± 0.085 8 0.930 ± 0.069 

RF 43 0.869 ± 0.088 8 0.935 ± 0.068 

MLP 10 0.871 ± 0.098 5 0.925 ± 0.067 

SVM 33 0.868 ± 0.097 9 0.938 ± 0.065 

 
 

We used this approach because the sample size of our dataset 
is relatively small and, in this situation, it is recommended to 
use every sample for model building. Proper estimates of 
model performance can be achieved using resampling 
methods when the number of samples is not large [17]. 

Leave-group-out CV (LGOCV) was applied in the outer 
loop. This resampling method randomly divides the dataset 
into a training and a test set a total on N times, forming N 
groups. Each group is examined independently: the training 
set of a group is used to build the model and then this model 
is evaluated using the test set of the same group. At the end, 
the classification results provided by the estimates of all 
groups are averaged. In this study, a value of N = 100 groups 
was chosen to obtain results with low variance and 
consequently to decrease the uncertainty of the performance 
estimates [17]. In each group, 25% of the dataset was 
randomly selected as the test set and the remaining 75% was 
used as the training set. Model performance was evaluated 
using the area under the ROC curve (AUC) averaged over 
groups’ estimates (mean ± standard deviation). 

The feature selection step was computed within the 
model-building process using the training set of each group. 
This process was not computed as an independent step to 
avoid overfitting, as mentioned by Ambroise and McLachlan 
[18]. A filter feature selection method based on the p-value 
provided by the Welch’s t-test was employed to generate a 
ranking of the features with the most discriminative power. 
This method evaluates the statistical significance of each 
feature independently, without analyzing the relation between 
features and without involving any predictive model [17]. 

Parameter tuning was computed using the training set of 
each group by performing an inner 10-fold CV loop. This 
step was performed F = 43 times in each group estimate: the 
ranked features provided by the feature selection step were 
progressively added one by one from most to least important 
and then each feature subset was used to train the predictive 
model and to compute the AUC on the test samples of the 
same group. At the end, a total of F = 43 AUC values are 
provided in each group evaluation, one per each feature 
subset. The NB was evaluated without parameter tuning, 

using a Gaussian kernel. The number of neighbors (k) in k-
NN was selected from k ∈ {1, 3, 5, ... , 21, 23}. The number 
of variables randomly sampled as candidates at each split 
(mtry) in RF was chosen from mtry ∈ {2, 3, 4, ... , 19, 20}. 
The number of units in the hidden layer (l) of the MLP was 
selected from l ∈ {3, 5, 7, ... , 23, 25}. SVM cost parameter 
(C) was chosen from C ∈ {2-4, ... ,20, ... ,24}. 

This model evaluation process was implemented with the 
Caret package [19] in R version 3.2.5 (R Development Core 
Team, Vienna, Austria). Model performance was analyzed 
separately for 2D and 3D features to study the differences. 

III. RESULTS 

Results show that classification with 3D texture features 
provides better accuracy than classification with 2D texture 
features. As it is illustrated in the profiles shown in Fig. 3, 
better average AUC is achieved when using 3D features 
(AUC > 0.9) instead of 2D features (AUC < 0.9) for all 
possible feature subsets and for all the models studied. 
Furthermore, as shown in Table I, the best AUC value in 3D 
texture analysis was obtained using fewer features (#Features 
≤ 9) than in 2D texture analysis (#Features ≥ 10) for all 
predictive models. This is an important result because it 
indicates that these two types of lesions could be 
differentiated using only a few features, thus reducing the 
computation time. 



  

TABLE II.  TOP TEN 3D TEXTURE FEATURES 

Method Feature Average 
Rank 

Average 
p-value 

GLCM Variance 1.22 < 10-6 

GLSZM 
Low Gray-Level Zone 
Emphasis (LGZE) 2.05 < 10-5 

GLSZM 
Small Zone Low Gray-
Level Emphasis (SZLGE) 3.48 < 10-5 

GLRLM 
Short Run Low Gray-Level 
Emphasis (SRLGE) 4.20 < 10-5 

GLRLM 
Low Gray-Level Run 
Emphasis (LGRE) 5.53 0.00001 

GLCM Sum Average 5.78 0.00003 

GLRLM 
High Gray-Level Run 
Emphasis (HGRE) 6.50 0.00007 

GLSZM 
High Gray-Level Zone 
Emphasis (HGZE) 8.01 0.00020 

GLRLM 
Long Run Low Gray-Level 
Emphasis (LRLGE) 9.28 0.00048 

GLSZM 
Gray-Level Non-uniformity 
(GLN) 9.73 0.00075 

 
Table I also shows that the classifier that yields the best 

AUC value for the 3D texture analysis is the NB (AUC = 
0.947 ± 0.067). This result can be surprising because NB is 
the simplest of all the models studied. However, several 
studies related to this work also concluded that NB provides 
better accuracy results than other models [11], [20]. Anyhow, 
the five models produce a good classification accuracy, so it 
suggests that all models could be employed to discriminate 
metastases from lung cancer and melanoma. 

Concerning the features with the most discriminative 
power, the nested CV scheme does not allow determining the 
exact ranking of features because the feature selection step is 
recomputed for every group. However, an average ranking 
was obtained. Table II shows the top ten 3D texture features 
used to evaluate the models: features derived from GLCM, 
GLRLM and GLSZM topped the ranking. Table II also 
shows the average p-value computed for these features: 
significant p-value (p < 10-4) was obtained for these ten 
features, which gives an idea of their discriminative power.  

Finally, it is relevant to mention that 3D features derived 
from the histogram and the NGTDM were not influential at 
all for classification, as none of the classifiers employed more 
than 9 features to achieve the best accuracy. 

IV. CONCLUSION 

In this study, a methodology based on a radiomics 
scheme was proposed to prove that brain metastases from 
lung cancer and melanoma can be differentiated by means of 
texture analysis. The results show that 3D texture features 
allow classifying both types of lesions more accurately than 
2D texture features for all the models tested in this work. 
Furthermore, the highest AUC value was achieved using only 
9 or less 3D texture features for all models. The next stage of 
this work would be to increase the number of samples to have 
the chance to create a final predictive model. It would also be 
interesting to include other primary sites of origin, like breast 
or kidney cancer. 
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