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Abstract— The Influenza type A virus can be considered as
one of the most severe viruses that can infect multiple species
with often fatal consequences to the hosts. The Haemagglutinin
(HA) gene of the virus has the potential to be a target for antivi-
ral drug development realised through accurate identification
of its sub-types and possible the targeted hosts. In this paper, to
accurately predict if an Influenza type A virus has the capability
to infect human hosts, by using only the HA gene, is therefore
developed and tested. The predictive model follows three main
steps; (i) decoding the protein sequences into numerical signals
using EIIP amino acid scale, (ii) analysing these sequences by
using Discrete Fourier Transform (DFT) and extracting DFT-
based features, (iii) using a predictive model, based on Artificial
Neural Networks and using the features generated by DFT.

In this analysis, from the Influenza Research Database,
30724, 18236 and 8157 HA protein sequences were collected for
Human, Avian and Swine respectively. Given this set of the pro-
teins, the proposed method yielded 97.36% (± 0.04%), 97.26%
(± 0.26%), 0.978 (± 0.004), 0.963 (± 0.005) and 0.945 (±
0.005) for the training accuracy validation accuracy, precision,
recall and Mathews Correlation Coefficient (MCC) respectively,
based on a 10-fold cross-validation. The classification model
generated by using one of the largest dataset, if not the largest,
yields promising results that could lead to early detection of
such species and help develop precautionary measurements for
possible human infections.

Index Terms— Artificial Neural Network, Amino Acid In-
dices, Discrete Fourier Transform (DFT), Hemagglutinin (HA)
Protein

I. INTRODUCTION
The Influenza type A virus can be considered one of the

most severe virus that can infect both mammals and birds.
The genome of the Influenza virus is composed of eight
segments that can encode more than 11 proteins [1]. One
of the most important proteins is the Haemagglutinin (HA),
which is an essential glycoprotein and a principal surface
antigen which is responsible for attaching the virions to
hosts, deciding the pathogenicity and virulence [1]. Until
now, 18 distinct Influenza A HA subtypes have been identi-
fied [2], [3].

The Influenza type A virus continually evolves due to the
high mutation rate and the constant changes to its genome.
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This constant adaptation usually makes any new strain of
virus more pathogenic than the previous. Furthermore, these
mutations also provide the virus with the ability to cross
the species barrier and may also affect the binding pattern
of a virus, with catastrophic consequences to the concerned
species [4].

In the literature, previous efforts and analysis have been
performed to analyse and characterise the phylogenetic di-
versity, and discover mechanisms that define the severity and
distribution of influenza type A virus [5]–[7]. Additionally,
as the authors concluded, classification and characterisation
of all the sequences with the proposed methods, was difficult
[5]–[7], thus a more advanced method is needed. Computa-
tional studies exist that tries to characterise and analyse the
Influenza type A with promising results [8]. In the proposed
method a computational, Artificial Neural Network (ANN)
learning based approach is created to predict if a particular
virus has the capability to infect humans, by only analysing
the HA protein sequence.

The paper is organised as follows: Section II presents the
methods and materials developed and used, while Section III
presents the results obtained. Finally, concluding remarks are
outlined in Section IV.

II. METHODS AND MATERIAL

A. Influenza A Hemagglutinin Proteins Data Set

For the proposed analysis 57117 HA Influenza type A
protein sequences are collected from the Influenza Research
Database [9], for three species, Human, Avian and Swine.
More specifically, as Table I shows 30724, 18236 and 8157
HA protein sequences were collected for Human, Avian and
Swine respectively. Furthermore, Table I shows the specific
number of sequences for each class of HA 1-18. Finally,
figure 1 illustrates the percentage of HA proteins per class
and per species. For the analysis, classification of the HA
protein sequences, based on the ability of the virus to infect
human hosts, the data were separated into two groups. The
first group contained all the sequences from HA 1-18 for the
viruses that have the ability to infect the Humans hosts, and
the second group with the sequences that have the potential
to infect the Avian and Swine hosts. For the first and second
groups, the total number of 30724 and 26393 HA protein
sequences were used respectively.

B. Data conversion and Normalisation

In this paper digital signal processing techniques are used
to extract information that can be directly used to charac-
terise the HA proteins. In the literature, various methods
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Fig. 1. HA Protein Sequences

TABLE I
NUMBER OF HA PROTEIN SEQUENCES

HA Subtype Human Avian Swine
H1 16145 650 5714
H2 96 462 2
H3 14055 1621 2138
H4 0 1478 5
H5 269 4242 32
H6 0 1529 2
H7 104 1809 1
H8 0 121 0
H9 13 3281 20

H10 4 834 1
H11 0 547 0
H12 0 178 0
H13 0 200 0
H14 0 17 0
H15 0 13 0
H16 0 150 0
H17 0 0 0
H18 0 0 0

Mixed 38 1104 242
Total 30724 18236 8157

used signal processing in bioinformatics for analysing and
characterising protein sequences [10]–[14] such as Complex
resonant recognition model in analysing influenza a virus
subtype protein sequences [10], CISAPS: Complex informa-
tional spectrum for the analysis of protein sequences [13] and
Structural classification of protein sequences based on signal
processing and support vector machines [14]. Furthermore,
previous studies [15] where signal processing was used to
analyse influenza A HA proteins aimed to identify new ther-
apeutic targets for drug development by better understanding

the interaction of the influenza virus and its receptors.
For the proposed analysis, signal processing methods

are used, and more specifically Discrete Fourier Trans-
form (DFT), as shown in equations 1-3. The analysis was
performed directly to absolute spectrum. Before applying
DFT to the HA protein sequences, Electron-ion interaction
potential (EIIP) [16], [17] amino acid index, was used to
convert alphanumerical sequences. The complete list of the
EIIP amino acid index can be found in Table II.

Discrete Fourier Transform (DFT)

X(n) =

N−1∑
m=0

x(m)e−j(2π/N)nm n = 0, 1, ..., N − 1 (1)

where X(n) are the DFT coefficients, N is the total number
of points in the series and x(m) is the mth member of the
numerical series. As the DFT coefficients contain two mirror
parts, only the (N/2) points of the series will be used.
The output of DFT is a complex sequence and can be
formulated as

X(n) = (R(n) + jI(n)), n = 0, 1, ..., (N − 1)/2 (2)

where R(n) and I(n) are the Real and Imaginary parts of
the sequence, respectively. The absolute spectrum (S(n)) can
be formulated as



S(n) = X(n)X∗(n) = |X(n)|2 , n = 0, 1, ..., (N − 1)/2
(3)

where X(n) are the DFT coefficients of the series x(n),
X ∗ (n) are the complex conjugates.

The coefficients from the absolute spectrum will be used
as a feature set to represent the characteristics of different
classes of proteins’ secondary structure. The HA influenza
A virus proteins sequences have different lengths, and zero-
padding was used to extend all the protein sequences to
N = 1024 before applying DFT. After DFT is applied the
output of the absolute spectrum includes 513 features. These
features are used as input to the ANN model.

TABLE II
EIIP VALUES

Amino acid EIIP Values
Leucine 0.0000
Isoleucine 0.0000
Asparagine 0.0036
Glycine 0.0050
Glutamic acid 0.0057
Valine 0.0058
Proline 0.0198
Histidine 0.0242
Lysine 0.0371
Alanine 0.0373
Tyrosine 0.0516
Tryptophan 0.0548
Glutamine 0.0761
Methionine 0.0823
Serine 0.0829
Cysteine 0.0829
Threonine 0.0941
Phenylalanine 0.0946
Arginine 0.0959
Aspartic acid 0.1263

C. Artificial Neural Network - Experimental Evaluation

Artificial Neural Networks (ANN) [18] are a computa-
tional method, based on an extensive collection of artificial
neurons, which mirrors the process a living brain solves
problems. Each neuron connects to multiple other neurons,
which can enforce or repress the impact on the activation
event of the connected neurons. The ANNs are considered
as self-trained, rather than explicitly programmed, and em-
ployed in research fields where the discovery of features
and classification is challenging in traditional classification
systems.

For the proposed work, the ANN receives an input of
513 features derived from the influenza type A virus pre-
processing and returns the probability of the virus infecting
humans. For the proposed work, the binary classification
consist of 57117 samples of which 30724 can infect humans.

The network setup consists of a single hidden layer of
128 units, Glorot-style uniform for initialization and rectified
linear units for the activation function. In order to train the
ANN, the Adam optimizer [19] was used with mini batch

size of 128 for 200 epochs. We use 10 fold cross-validation
and show the network performance based on accuracy. The
model was implemented by utilising the Tensorflow [20] and
Keras [21] libraries. A visual representation of the model can
be seen in Figure 2.

Fig. 2. Artificial Neural Network Model

The high performance of both training and testing shows
that for this type of problem more advanced Neural Network
models (such as Deep Neural Networks) and regularization
techniques are not needed.

III. RESULTS AND DISCUSSION

In this paper, a classification model is presented, based on
Artificial Neural Networks, for the analysis and classification
Influenza type A based upon the ability to infect a human
host solely by using the HA protein sequence. To ensure
that the proposed classification model is accurate and the
results can be generalised, 10-fold cross-validation was used.
The total accuracy of the predictive model with average
training accuracy, testing accuracy, precision, recall and
MCC of 97.36% (± 0.04%), 97.26% (± 0.26%), 0.978
(± 0.004), 0.963 (± 0.005) and 0.945 (± 0.005) for the
training accuracy validation accuracy, precision, recall and
Mathews Correlation Coefficient (MCC) respectively. As the
results show, the proposed model can distinguish HA protein
sequences with extremely high accuracy whenever the virus
under investigation will have the capability to infect human
hosts. Detailed results can be found in Table III.

IV. CONCLUSIONS

The paper presents a highly successful predictive model to
identify and differentiate Influenza type A virus, which can
and cannot infect Humans, based on the HA gene, which
is considered as a highly potential antiviral drug candidate.
The classification model was created by utilising one of the
largest possible datasets, if not the largest, in order to better
generalise the model. The classification model obtained over



TABLE III
ACCURACY RESULTS FOR THE PREDICTION OF INFLUENZA A VIRUS INFECTIONS

Fold Training Accuracy Validation Accuracy Validation Precision Validation Recall Validation MCC
1 0.974 0.970 0.976 0.959 0.940
2 0.973 0.971 0.982 0.955 0.941
3 0.973 0.970 0.973 0.962 0.940
4 0.974 0.971 0.974 0.964 0.942
5 0.974 0.970 0.982 0.954 0.941
6 0.973 0.975 0.981 0.966 0.950
7 0.974 0.972 0.973 0.967 0.944
8 0.973 0.978 0.982 0.971 0.957
9 0.974 0.975 0.980 0.966 0.950

10 0.974 0.972 0.976 0.963 0.944
Average 97.36% (± 0.04%) 97.26% (± 0.26%) 0.978 (± 0.004) 0.963 (± 0.005) 0.945 (± 0.005)

the 10-fold cross validation yielded the average training accu-
racy, testing accuracy, precision, recall and MCC of 97.36%
(± 0.04%), 97.26% (± 0.26%), 0.978 (± 0.004), 0.963 (±
0.005) and 0.945 (± 0.005) respectively. Also, by apply-
ing signal processing technique, namely Discrete Fourier
Transform, on the protein sequences, it was found that
useful spectral characteristic features can be distinguished
that are capable of representing the protein groups and thus
further enhanced using the Artificial Neural Network based
classifier.

As reported in the literature, there are over 600 amino
acid indices, where each represents a unique physicochemical
feature of the protein [13], in contrast to the one amino acid
index used throughout this study. Future studies are required
to identify any potential amino acid indices that are capable
of representing, characterising and classify the Influenza type
A HA protein sequences. A computational tool that is ca-
pable of classifying and distinguishing potentially dangerous
viruses that have the capability to infect Human hosts will be
critical and required to monitor future outbreaks. Future stud-
ies will investigate additional machine learning approaches,
to explore the efficiency of the methodology, using signal
processing methods to encode protein sequences.
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