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Abstract— We present a semi-automated system for sizing
nasal Positive Airway Pressure (PAP) masks based upon a
neural network model that was trained with facial photographs
of both PAP mask users and non-users. It demonstrated an
accuracy of 72% in correctly sizing a mask and 96% accuracy
sizing to within 1 mask size group. The semi-automated system
performed comparably to sizing from manual measurements
taken from the same images which produced 89% and 100%
accuracy respectively.

Index Terms— OSA, PAP, CPAP, neural networks, machine
learning, facial landmarking, telemedicine, sizing

I. INTRODUCTION

Positive airway pressure or continuous positive airway
pressure (CPAP) therapy, seminally described by Sullivan et
al. in 1981 [1] is generally accepted as the gold standard
treatment for obstructive sleep apnoea (OSA) [2]. Posi-
tive airway pressure effectively treats OSA by providing a
pneumatic splint at the location of soft palate, preventing
collapse onto the pharynx and thus allowing the passage of
air to the lungs. PAP therapy is applied using a specially
manufactured device that consists 3 of main components:
a pressure generator, which is a highly sophisticated air
pump used to compress atmospheric air for delivery into the
pharynx; a mask which the patient wears over the nose and
/ or mouth to ensure the pressurised air is delivered to the
correct location and finally a humidifier unit.

The mask is a critical component of the PAP system as it is
the device that is in intimate contact with the patient and must
be capable of maintaining treatment pressure for the duration
of a night’s sleep. Other than potentially reducing treatment
efficacy, issues with mask performance are often immediately
noticeable for the patient such as uncomfortable air leaks
into the eye or visible red marks on the face caused by mask
rubbing during use. While incidents of side effects due to
mask usage vary, a number of studies have observed that
many patients experience difficulties using their mask [3].
Amfilochiou et al. reported incidences of mask leak and red
marks in 48% and 40% of participants [4]; Gay et al. noted
that mask interface issues are the most commonly reported
PAP related side effects [5].
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In the context of PAP therapy compliance, incidents of
device related side-effects such as mask leakage are not
inconsequential. Engleman in 1994 observed that patients
who experienced side effects used their PAP devices less
that those who did not [6]. More recently in 2003 Massie
and Hart, while studying differences between nasal and nasal
pillows mask types noted a negative correlation with the
occurrence of air leaks and sore eyes with CPAP usage [7].
These side effects often form a barrier to effective therapy
usage, particularly with new patients [8] being introduced to
PAP for the first time. It has been found that the first week
of therapy is critical in determining long term therapy use
patterns, as it is during this time a patient decides if they
are going to continue or abandon treatment [9], [10]. Given
these characteristics and that patients who swap their mask
due to poor fit or comfort problems are 7 times more likely to
discontinue therapy [11] it is critical that patients are issued
with the correct mask size and type on the first attempt.

A. Current Mask Sizing

While the exact details of sizing PAP masks varies be-
tween each of the manufacturers, there are two common
methods which are generally used amongst clinicians. One
process uses a fitting template provided by the manufacturer
such as that illustrated in Figure 1a. When using these
templates the patient places their nose within specific features
of the template and the clinician matches the appropriate size
with indications on the guide. The commonly used alternative
sizing methodology uses the experience and expertise of the
clinician to make the mask choice without the use of a guide.
This paper describes the potential use of a third, automated
method of PAP mask sizing with the aim of improving sizing
accuracy and reducing mask related side effects.

B. Potential Applications of Automated Sizing

Automated PAP mask sizing could provide significant ben-
efit to new patients requiring PAP therapy who live in remote
or rural communities and have limited access to medical
services. Through the use of Home Sleep Tests (HST) an
OSA diagnosis can be issued without the patient leaving
the home. However in order to issue a PAP system with
appropriate mask an in-person consult (possibly requiring
hours of travel) is currently required. An automated sizing
system could enable the use of a telemedicine approach to
PAP consults. A patient would send a facial photograph to a
clinician who would use software to analyse the photograph
and automatically determine the correct mask size. The mask
would then be sent to the patient, thus avoiding an in-
person visit. Such a system could also provide additional
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benefit by reducing consult time and increasing the capacity
of a clinician to see more patients. In this study we have
developed a semi-automated PAP mask sizing system by
processing facial images.

II. IMAGE DATASET

The dataset used throughout this study comprised 251
facial images of male and female, PAP (49 samples) and non-
PAP users that were collected in a variety of locations using
smartphone cameras. Care was taken during photography to
ensure the face was not obscured by glasses, hair or hats and
that the pose of the face was approximately parallel with
the smartphone. Participants had their the ALAR or nose
width (see Figure 1c) measured at the time of image capture
using vernier callipers. These nose width measurements were
applied against a sizing template for an Eson nasal PAP mask
manufactured by Fisher & Paykel (F&P) Healthcare (Figure
1a & Table I) to determine the ‘ground truth’ mask size for
each of the selected participants.

Each image in the set (e.g. Figure 1b) is a frontal photo-
graphic shot of the participant with an Australian 20 cent
piece placed on the forehead to provide an indication of
scale.

(a) Eson sizing template (b) Labelled image

(c) Illustration indicating ALAR Width

Fig. 1. Dataset (sample image used with permission from Priyanshu Gupta)

III. METHODS

Following data collection, the face from each image was
extracted using the opencv implementation of the Viola-
Jones algorithm[12] into a sub-image and resized to 512 x
512 pixels. The pixel locations of the left and right lateral
nasal walls were then manually identified and recorded for
each image. The scale of each image was recorded in pixels
/ mm using ImageJ (produced by the US National Institute
of Health) by measuring the number pixels that span the
diameter and dividing by the known diameter of the coin
(28.65mm).

A. Size Overlap

The PAP mask industry provides a margin of overlap for
mask sizes as the means of determining the correct mask
size is not an exact science (see Section I-A). Those mask
users who fall within the boundary between two sizes will
achieve acceptable mask performance with either of the
adjacent mask sizes. This margin of acceptable error provides
some tolerance to mis-sizing. To reflect this situation in the
field, we applied a 2% tolerance to sizing decisions within
this study. For individuals whose ‘ground truth’ nose width
fell within 2% of a size boundary e.g 36.26 - 37.74mm
for a small / medium mask, the predicted mask size was
considered correct if either a small or medium mask is
predicted.

B. Data Pre-Processing

As nasal mask sizes are solely determined by the width of
a user’s nose, the nasal region of each image was extracted
in grayscale using the opencv implementation of the Viola-
Jones algorithm[12] and the pre-trained nose haarcascade
classifier provided with opencv (Stages 1 & 2 of Figure 2).
Each 200×150 image was unwrapped to form a data vector
(x ∈ R251×30000) and the two nasal landmark coordinates
were unwrapped to give a 4 element target vector (x ∈
R251×4). The x and y datasets were scaled and centered
between -1 and 1 by dividing by their respective maxima
and subtracting the resulting mean (Stage 3 Figure 2).

C. Manual Mask Sizing from the Images

In an attempt to determine the optimum performance that
could be achieved by the system, mask sizes were also
calculated manually using the labelled landmarks of the
test set facial photographs. The physical nose width was
calculated by dividing by the distance between the two
labelled landmarks (pixels) and the scale (pixels / mm) as
provided by the 20 cent piece. This physical measurement
was compared with Table I to determine the sizes referred
to as Manually Measured throughout this study.

D. Neural Network Architecture

As illustrated in Figure 2 the neural network stage used
during this study was a 3 layer architecture, consisting of an
input stage with 30000 inputs, a hidden layer with 40 hidden
units and an output layer with 4 units. The input and hidden
layers also possessed a bias unit. The hidden layer used
a tanh non-linearity activation function, while the output

Size Lower Limit (mm) Upper Limit (mm)
Small 0 37

Medium 37 41
Large 41 45

Too Large* 45 ∞

TABLE I
FISHER & PAYKEL ESON MASK SIZES. *NOT ACTUALLY A SIZE BUT IS

USED TO REPRESENT INDIVIDUALS WHO DO NOT FIT AN ESON MASK



Fig. 2. Processing stages of the model

layer possessed a linear activation function. The weights
of both the hidden and output layers were initialised using
random values between -0.05 and 0.05. This architecture was
selected following a hyperparameter sweep that produced
optimal validation set performance using 40 training and 13
validation samples.

Once the network architecture was selected, leave-one-out
cross validation was used over the remaining 198 sample test
data set to evaluate the overall performance of the model.

E. Forward & Back Propagation

During training, the forward propagation process differed
from the standard method [13] used for a neural network
slightly in that the hidden unit layer also incorporated
the use of a 70% dropout stage to improve generalisation
performance [14]. The contribution of each weight within
the network to the overall error was computed by backprop-
agating the sum of squares error function result from the
output layer through the network [13].

F. Weight Updates

Following backpropagation, the weights at each of the
layers of the neural network were updated to reflect their
respective contributions to the error. For the output layer
using a linear activation function, the optimal weights were
determined using the Moore-Penrose pseudo-inverse [15].

The updates to the hidden layer weights were calculated
using the standard update method with momentum. The
learning rate used to update the weights; α started at 0.002
and was reduced by 5% for each improvement in network
performance. The momentum µ was fixed at 0.95 throughout
training.

G. Determining Predicted Mask Size

The leave-one-out training & test regime was repeated 4
times with network weights re-initialised with random values
prior to each repetition. Thus 4 nasal landmark predictions
were produced for each test image. The predicted landmarks
were then transferred back into image space by re-applying
the mean and maximum values calculated in section III-B.
The mean position of each landmark was then computed for
each of the test set images. The nose width was determined
using the length of the line between the two mean predicted
landmarks and the scale of the image as measured in section

Predicted Mask Sizes
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Small 61 26 5 1

Medium 8 55 9 0

Large 1 3 21 1

Too Large 0 1 0 6

TABLE II
CONFUSION MATRIX OF PREDICTED MASK SIZES (USING THE NOSE

WIDTH FROM THE MEAN TEST SET LANDMARKS)

Manually Measured Mask Sizes
A
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Small 81 12 0 0

Medium 2 66 4 0

Large 0 1 23 2

Too Large 0 0 0 7

TABLE III
CONFUSION MATRIX OF MASK SIZES MANUALLY MEASURED FROM

IMAGES

II. This nose width estimate was then used with the known
mask sizes in Table I to determine the Predicted mask size.

IV. RESULTS

Tables II to IV summarise the performance of the neural
network sizing model and the manual measurements taken
from the test images; while Figures 3a & b provide examples
of accurate and inaccurate landmark predictions. Using the
confusion matrix in Table II, the semi-automatic sizing
system achieved an overall accuracy of 72% in correctly
estimating the mask size and achieved a within one size
accuracy of 96%. The within one size accuracy figure states
that the system predicted the correct size or an adjacent
size for 96% of samples. The manually measured accuracy
metrics of 89% and 100% respectively are shown in Table
III.

V. DISCUSSION

The semi-automated mask sizing system produced an
accuracy of 72%, while the manual measurements taken
from the photograph achieved 89%. It was expected that the



manual annotator would achieve 100% accuracy. A review
of the images revealed that parallax error contributed to the
error of the system. The nasal region in some images was
also obscured thus making landmarking more difficult. Such
an issue could contribute significantly to the measurement /
prediction error through an incorrect identification of nasal
width, particularly affecting those measurements which are
very close to the 2% size tolerance.

Another potential source of error could result from the
location of the 20 cent piece on the forehead. It is possible
that in some images the reference coin is some distance
away from the widest part of the nose in terms of depth.
This difference in depth could introduce error as the physical
distance represented by a single pixel at nose and coin would
differ; thus producing errors in final sizing. The model could
benefit from additional work investigating more reliable
means of defining scale within the images.

Given the modest sample size of the datasets used in this
study the system would almost certainly benefit from addi-
tional data. This is particularly evident examining the images
where the system performed least effectively (e.g. Figure 3b);
by increasing the number and variety of nose types within
the data we anticipate that the overall performance of the
system would improve.

(a) Correct prediction (b) Inaccurate prediction

Fig. 3. Nasal landmark prediction examples (blue dots: predicted land-
marks, red dots: labelled landmarks)

VI. CONCLUSION

We intend to continue to improve the accuracy of the
proposed system: collecting a larger data set, investigating
the use of more advanced techniques such as convolutional
neural networks to improve facial landmarking accuracy as
well as methods to offset errors within the system. In order

Sensitivity (%) Pos. Predict. (%)
S M L TL S M L TL

Pr
ed 66 76 81 86 87 65 60 75

M
an 87 92 88 100 98 84 85 78

TABLE IV
SENSITIVITY & POSITIVE PREDICTIVITY PERFORMANCE OF PREDICTED

(PRED) MASK SIZES AND THOSE DETERMINED FROM MANUAL

PHOTOGRAPH (MAN) MEASUREMENTS (S: SMALL, M: MEDIUM, L:
LARGE, TL: TOO LARGE)

for a future version of the system to be effectively used in
the field, a means of automatically determining scale within
the image must also be developed.

This study presented a semi-automated nasal PAP mask
sizing system based on neural networks. The system achieved
72% accuracy in correctly estimating the Fisher & Paykel
Eson mask size and a 96% accuracy in sizing within one size.
This level of performance was comparable to that achieved
using manual measurements on the same data set. Further
improvements could be made increasing and refining the
data sets used to train and evaluate the model as well as
investigating additional methods of determining scale.
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