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 � 

Abstract� Physiological networks reveal information about 

the interaction between subsystems of the human body. Here 

we investigated the interaction between the central nervous 

system and the musculoskeletal system by mapping functional 

muscle networks. Muscle networks were extracted using coher-

ence analysis of muscle activity assessed using surface electro-

myography (EMG). Surface EMG was acquired from 36 mus-

cles distributed throughout the body while participants were 

standing upright and performing a bimanual pointing task. 

Non-negative matrix factorization revealed functional connec-

tivity in four frequency bands. The spatial arrangement dif-

fered considerably across frequencies supporting a multiplex 

network organisation. Graph-theory analysis of layer-specific 

network revealed a consistent fat-tail distribution of the edges 

weights, distinct efficiency values, and core-periphery proper-

ties. These frequency bands may be spectral fingerprints of 

different neural pathways that innervate the spinal motor neu-

rons to control the musculoskeletal system.  

I. INTRODUCTION 

The human organism is an integrated network, in which 
complex physiological systems, each with its own regulatory 
mechanisms, continuously interact. By mapping the interac-
tions among diverse systems, one can identify physiological 
networks [1]. Network analysis has been applied to different 
physiological systems in the search for understanding how 
dynamical interactions may result in collective functional 
behaviour. This includes, for example, studies on interac-
tions between heart rate variability and electroencephalog-
raphy (EEG) rhythms to examine the control of autonomic 
cardiac activity during sleep [2]. Network analysis has prov-
en crucial for examining how multiple spatially distinct 
brain regions interact to enable cognitive functioning and 
control behaviour [3].  

More recently, network analysis has been shown useful 
to unravel interactions between the central nervous system 
and the musculoskeletal system. The musculoskeletal system 
can be cast as a network in which muscles are linked to one 
another by the bones they are connected to [4, 5]. The nerv-
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ous system has to coordinate activity of multiple muscles 
when controlling the musculoskeletal system, as changes in 
muscle activity in one part of the body may also affect other 
muscle groups. This coordination can be investigated by 
mapping functional muscle networks based on intermuscular 
coherence [6]. Intermuscular coherence reflects synchro-
nized neural inputs to different muscles, which can be used 
to infer the neural pathways that project to spinal motor neu-
rons [7].  

Here we investigated the organisation of functional mus-
cle networks in human subjects who performed a postural 
task. We used non-negative matrix factorisation (NNMF) to 
distinguish oscillatory inputs at different frequencies and 
investigate the resulting network topology at each frequency 
band. Every frequency band forms a layer of a multiplex 
network [8]. As we will argue, these layers encode distinct 
types of interactions between muscles and thereby facilitate 
both parallel and hierarchical structures for motor control. 

II. METHODS 

Functional muscle networks were determined of seven 
male and seven female healthy subjects (25±8 years). To 
induce activity in muscles across the whole body, subjects 
were instructed to stand upright while pointing on a target in 
front of them holding a laser pointer with two hands. The 
Ethics Committee Human Movement Sciences of the Vrije 
Universiteit Amsterdam had approved the study (reference 
ECB 2014-78). 

Bipolar electromyography (EMG) was measured from 36 
muscles distributed across the whole body, i.e. 18 bilateral 
muscles: tibialis anterior (TA), gastrocnemius medialis 
(GM), soleus (SOL), rectus femoris (RF), biceps femoris 
(BF), vastus lateralis (VL), adductor longus (AL), external 
oblique (EO), pectoralis major (PMA), sternocleidomas-
toideus (SMA), longissimus (LO) latissimus dorsi (LD), 
trapezius (TZ), deltoid (D), biceps brachii (BB), triceps bra-
chii (TRB), extensor digitorum (ED), flexor digitorum su-
perficialis (FDS). EMG envelopes were extracted via the 
Hilbert transform before determining the pairwise complex-
valued coherency of all 630 muscle pairs. For every subject 
coherencies were averaged over trials.  

The squared modulus of the coherency spectra (magni-
tude-squared coherences) were decomposed in four compo-
nents using NNMF such that components show minimal 
overlap in their frequency range, which are peaked at the 
different frequency bands [6]. The advantage of using 
NNMF is that extracted spectral profiles and weights that 
define the muscle networks are semi-positive definite, that 
is, the adjacency matrices are semi-positive definite as re-
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quired for the majority of commonly used network metrics 
[6, 9]. The corresponding NNMF-weights yielded undirected 
weighted graphs per frequency component. By construction, 
these four graphs connected the same set of nodes and hence 
formed the layers of a multiplex network, here referred to as 
a muscle network.  

For every subject, the weighted muscle networks were 
thresholded to create binary networks. We used a relative 
threshold of 0.058±0.013 (mean-value over subjects ± SD) 
guaranteeing a minimally-connected network across fre-
quencies without isolated nodes; all muscles were connected 
to at least one other muscle by an edge at one of the layers of 
the multiplex network in every subject. Since we used the 
same relative threshold across frequencies, the network den-
sity is identical across layers.  

To quantify the multiplex networks, we computed the 
network metrics mean degree  [9] and core/periphery struc-
ture  G G CB AMPCLC  [10] for each network layer 
using the Brain Connectivity Toolbox [9]. We also estimated 
global efficiency  via Dijkstr JEMPGRF [11]. Differences 

between layers were tested using an ANOVA with repeated 
measures. 

III. RESULTS 

NNMF yielded four modes in distinct frequency ranges 
spanning, from here-on denoted as 0-3, 3-11, 11-21, and 21-
60 Hz DPCOSCLAW J WCP , respectively. The corresponding 
weights, which served to define the weighted connectivity 
matrix, appeared to follow a power law indicating a scale-
free topology at each layer of the multiplex network (Fig. 1).  

We found clear differences in the spatial arrangement of 
edges (Fig. 2, left column). These differences became par-
ticularly visible after thresholding the edges to create the 
aforementioned minimally-connected binary networks (Fig. 
2, right column). For example, the 3-11 Hz layer contained 
several connections between distinct body segments, where-
as the 21-60 Hz layer predominantly covered connections 
between muscles within the same body segment (Fig. 3). 

 

 

Figure 1.  Distribution of weighted edges of the four frequency 
layers averaged over subjects. 

 
Figure 2.  Adjencency matrices of the four layers of the muscle 

networks averaged over subjects: log transformed 
weighted networks (left column) and minimally-
connected binary networks (right column). Colours 
on bars along axes indicate leg, trunk and arm 
muscles at the right and the left side, respectively. 

The core-periphery structure revealed distinct core sub-
division across layers. In the 0-3 Hz layer, the core consisted 
mainly of muscles in the legs and lower back. In the 3-11 Hz 
layer, this core subdivision changed from legs and lower 
back to a combination of legs and trunk, to trunk and arms in 
11-21 Hz, and to a more segregated subdivision in the 21-
60 Hz layer (Fig. 3). As a result, the maximized coreness 
changed significantly across these frequency components, 
F(3,39)=13.90, p( p

2
=0.52. The 0-3 Hz and 11-21 Hz 

layers revealed very high maximized coreness (0.93±0.15 
and 0.75±0.17), as the core of the network was located in 
either the legs and lower back or in the arms, respectively. In 
the other two layers (3-11 and 21-60 Hz), the core was more 
spread across the body, accompanied by a lower maximized 
coreness (0.63±0.19 and 0.60±0.09). 

The degree distribution also differed considerably across 
layers. Comparing the degree of each muscle (node) across 
frequencies, visual inspection revealed that several muscles 
mainly participated in a particular layer (frequency compo-
nent) of the network (Fig. 4). For example, leg muscles, in 
particular GM and SOL in the lower leg and BF in the upper 
leg, had a high degree at the lowest frequencies (0-3 Hz). In 
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contrast, the forearm muscles ED and FDS were completely 
uncoupled from this layer and instead showed the highest 
degree at 3-11 Hz. Chest (PMA) and shoulder muscles (TZ, 
D) had the highest degree in the 11-21 Hz layer, while the 
degrees in the 21-60 Hz layer were more evenly distributed 
across muscles, in line with our findings regarding the core-
periphery structure.  

The global efficiency changed significantly from 
0.12±0.04 to 0.16±0.08, 0.12±0.05 and 0.15±0.09 from the 
layer of the lowest to that of the highest frequencies 
(F(3,39)=3.79, p) p

2
=0.23). 

IV. DISCUSSION 

Functional connectivity analysis of EMG envelopes re-
vealed connectivity in distinct frequency bands, which 
yielded the layers of the multiplex network. Networks dif-

fered significantly across layers as demonstrated by several 
network metrics. The lowest frequency layer (0-3 Hz) con-
tained a network connecting primarily leg muscles, as re-
flected by their degree and core subdivision. The second 
layer (3-11 Hz) contained more uniform connectivity across 
muscles and displayed a lower coreness statistic. The fore-
arm muscles participated particularly to this layer. The third 
layer (11-21 Hz) showed again a high maximized coreness 
statistic, which mainly involved trunk and arm muscles. The 
fourth layer (21-60 Hz) had the lowest coreness statistic and 
was dominated by a uniform and local connectivity. These 
findings demonstrate that functional muscle networks can 
form a multiplex network and that, if following this ap-
proach, the layers in the multiplex contain networks with 
different, anatomically plausible, spatial arrangements in 
distinct frequency ranges.  

 
Figure 3. Spatial representation of the four layers of the multiplex network averaged over subjects. Edges represent the minimally-connected 

network (relative threshold of 0.052) across frequency components. Color-coding shows the core-periphery structure (blue: core 

nodes, green periphery nodes) and the size of the edges is relative to the degree of the node. Body meshes obtained from [18]. 

 

 

 

 
Figure 4.  Degree distribution for the four frequency layers of the multiplex network, averaged over homologous muscles (on the left and right 

side of body) and subjects. 
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 The layers of the functional muscle network likely reflect 
different types of interactions between the central nervous 
system and the musculoskeletal system. Previous studies 
reported functional connectivity between sensorimotor sys-
tems at particular frequencies. When it comes to interactions 
between motor cortex and muscles, corticomuscular coher-
ence has been mainly observed in the beta frequency band 
(15-30 Hz) [12, 13], while intermuscular coherence between 
homologous muscles is dominant in the alpha band (6-12 
Hz) [14]. This separation in frequencies suggests different 
mechanisms underlying the emergence of the coherence pat-
terns. One possibility for this is the involvement of two sepa-
rate neural pathways with direct corticospinal projections 
and divergent projections to the musculoskeletal system 
originating from subcortical regions such as the olivo-
cerebellar system [15]. Here we advocate the analysis of 
multiplex muscle networks as it may provide information 
about the wiring diagrams of different neural pathways that 
project to the spinal motor neurons in parallel, which would 
be lost when analysing a single frequency or collapsing net-
works across different frequencies. By using model inver-
sion techniques the functional connectivity patterns of each 
layer may be used to uncover structural pathways in the mo-
tor system that are otherwise difficult to assess directly [16]. 

When focussing on spinal cord activity, so-called motor 
synergy encoders may also help explaining the emergence of 
the different layers of muscle network, as they have proven 
successful in the analysis of muscle synergies [17]. They 
receive input from both the motor cortex and sensory path-
ways and target motor unit pools through a combination of 
direct monosynaptic connections and indirect polysynaptic 
connection through a motor synergy encoder network. The 
inter-segmental axons of motor synergy encoders allow for 
activating non-neighbouring and even distant motor neurons. 
Connectivity between muscles located close to and far away 
from each other can hence reflect the organisation of these 
synergy encoders in the spinal cord. 

To experimentally probe for mechanisms underlying mus-
cle networks, perturbing the networks and monitoring their 
changes appears as an obvious next step. How do multiplex 
network change in different behavioural conditions, for ex-
ample, when the stability of the subject is jeopardized? In 
fact, changes in tasks conditions have already been shown to 
affect a single muscle network [6], but it remains to be seen 
whether this also alters the multiplex structure reported here. 
In any case, this future work will further underscore the val-
ue of multiplex networks in studying physiological net-
works. 

V. CONCLUSION 

Intermuscular coherence reveals functional connectivity at 
multiple broadband, but distinct frequency components that 
give rise to a multiplex network organisation. The corre-
sponding network metrics display different characteristics 
between the layers of this multiplex network. This uncovers 
the anatomically plausible structures of correlated oscillatory 
inputs to muscles across frequencies and provides novel in-
sight into the neural pathways that are involved in the coor-
dination of the musculoskeletal system. 
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