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Mutual Information for Intrapartum fetal Heart Rate Analysis

Carlos Granero-Belinchon(1), Stéphane G. Roux(1), Nicolas B. Garnier(1), Patrice Abry(1), Muriel Doret(2)

Abstract— The analysis of the temporal dynamics in intra-
partum fetal heart rate (FHR), aiming at early detection of
fetal acidosis, constitutes an intricate signal processing task,
that continuously receives significant research efforts. Entropy
and entropy rates, envisaged as measures of complexity, often
computed via popular implementations referred to as Ap-
proximate Entropy (ApEn) or Sample Entropy (SampEn), have
regularly been reported as significant features for intrapartum
FHR analysis. The present contribution aims to show how
mutual information enhances characterization of FHR temporal
dynamics and improves fetal acidosis detection performance.
To that end, mutual information is first connected to ApEn
and SampEn both conceptually and with respect to estimation
procedure. Second, mutual information, ApEn and SampEn
are computed on a large (' 1000 subjects) and documented
database of FHR data, collected in a French academic hospital.
Reported results show that the use of mutual information
permits to significantly outperform ApEn and SampEn for
acidosis detection, during any stage of labor.

I. INTRODUCTION

Intrapartum fetal heart rate monitoring. Intrapartum fe-
tal heart rate (FHR) monitoring is a routine procedure in
hospitals world-wide, aiming to assess the health status of
the baby and to detect as early as possible fetal acidosis,
whose occurrence imply rapid intervention to prevent severe
consequence for the baby and the mother [1]. In clinical
practice, intrapartum FHR analysis essentially relies on the
visual inspection of cardiotochograms, guided by a set of
rules established by the International federation fo Gynecol-
ogy and Obstetrics [2]. However, there are on-going research
efforts aiming to develop statistical signal processing features
permitting to automatically quantify FHR complex temporal
dynamics and improve fetal acidos detection.
Related works. Spectrum estimation is amongst the first
statistical tool that has been considered for computerized
analysis of FHR (cf. e.g., [3], [4]). Aiming to explore tempo-
ral dynamics beyond the mere temporal correlations, several
variations of nonlinear analysis have been envisaged (cf.
e.g., [5], [4], [6]). More recently the concepts of fractal [7],
[8] and multifractal [9] have also been showing promising
performance in fetal acidosis detection. Complexity measures
also constitute classical nonlinear dynamics analysis tools,
the most popular being based on information theoretic quan-
tities, based on Shannon Entropy thus permitting to define
entropy rates [10], [11], [12], see also [13] for a review. No-
tably, two practical implementation (or estimation procedure)
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of such entropy rates and variations, referred to Approximate
Entropy (ApEn) [10], Sample Entropy (SampEn) [14], are
massively used in heart rate analysis both for adults and
fetuses (cf. e.g., [4], [15]) and are usually considered as
state-of-the-art tools in FHR analysis, together with a later
extension, Multiscale Entropy (ME), that computes Sam-
ple Entropies for several low-pass filtered version of FHR
data [16].
Goals, contributions and outline. Revisiting the theoret-
ical definition of entropy rates, the present contribution
first shows that entropy rates can be formally split into
two components, one of them, referred to as auto-mutual
information (MI), conveying information about nonlinear
(or higher order) statistics of the temporal dynamics of
the data, MI is hence explicitly related to entropy rates
and thus to ApEn and SampEn (cf. Section III-A). The
estimation procedures of Shannon Entropy and MI on one
hand based on k-nearest neighbor (k-NN) algorithms [17],
are explicitly compared to those of ApEn and SampEn on
other hand, based on Correlation-Integral based algorithms
[10], [16], [18] (cf. Section III-B). Further, these different
quantities are computed on a large (' 1000 subjects) and
documented database of FHR data, collected in a French
academic hospital, described in Section II. Results reported
and discussed in Section IV indicate that MI permits a
much more accurate characterization of nonlinear temporal
dynamics in FHR time series yielding significantly improved
fetal acidosis detection performance, compared to entropy
rates, notably compared to their estimation through the ApEn
or SampEn implementations. It is also shown that these
increased performance are observed independently during
both Phase I and Phase II of labor.

II. DATA

Database. FHR were routinely monitored and collected
at the academic Hospital Femme-Mere-Enfant, Lyon-Bron,
France from 2000 to 2010, were a large database of FHR
recordings has been set-up and documented with clinical
information regarding delivery conditions as well as the
health status of the baby cf. [19]. Notably, pH, measured
by blood test immediately after delivery is systematically
documented and used as ground-truth: When pH ≤ 7.05, the
newborn is considered has having suffered from acidosis.
Cardiotochograms were recorded using scalp electrode by
STAN S21 or S31 system, with 12bit resolution, 500 Hz
sampling rate (STAN, Neoventa Medical, Sweden). For the
purpose of this study, FHR tracing with too poor quality
(missing data, large gaps, short recordings) were excluded.
Datasets. For the present study, two large datasets are



extracted. Dataset I consists of subjects for which delivery
took place during Stage I (or after less less than 15min of
stage II) and gathers 913 normal (N, pH < 7.05) ) and 26
acidotic (A, pH ≥ 7.05) subjects. Dataset II gathers FHR
for delivery that took place during the second stage (Stage
II last more than 20min) and gathers 450 normal (N) and
15 acidotic (A) subjects. FHR tracings are analyzed within
a single 20-min long window located either at the end of
Stage I (for Dataset I ) or Stage II (for Dataset II).
Time Series. From the lists of RR-interarrivals ∆k in ms
available for each subject, regularly sampled FHR time series
in Beat-per-Minutes (BpM) are obtained by interpolation of
the samples {. . . , 36000/∆k, . . .}. The sampling frequency
has been set to fs = 10Hz.

III. INFORMATION THEORETIC QUANTITIES

A. Entropy, Entropy rate and Mutual Information

Shannon Entropy. Let X denote a stationary process.
Following [20], we define the m-dimensional time-embedded
process X(m,τ)

t as:

x(m,τ)
t = (x(t), x(t−τ), x(t−2τ), ..., x(t−(m−1)τ)) . (1)

The Shannon Entropy of the m-embedded version of process
X , H(m,τ)(X), is defined as the Shannon Entropy H(x(m,τ)

t )
computed from the joint probability density function of the
embedded vector x(m,τ)

t :

H(m,τ)(X) = H(x(m,τ)
t ) (2)

= −
∫
Rm

p(x(m,τ)
t ) log p(x(m,τ)

t )dx(m,τ)
t .(3)

The stationarity of X induces that H(m,τ)(X) does not
depend on time t. For embedding m = 1, the Shannon
entropy does not depend on the time delay τ and we note it
simply H .
Entropy Rates. The entropy rate of order m, h(m,τ)(X),
measures the change in Shannon entropy induced by increas-
ing the embedding dimension:

h(m,τ)(X) = H(m+1,τ)(X)−H(m,τ)(X) (4)

Mutual Information. The general form of mutual in-
formation I(m,p,τ)(Y,X) quantifies the amount of in-
formation shared by (stationary) processes X and Y ,
via associated embedded vectors x(m,τ)

t and y(p,τ)
t′ :

I (m,p,τ)(Y,X)(t′ − t) = I(y(p,τ)
t′ , x(m,τ)

t )

=

∫
Rm+p

p(y(p,τ)
t′ , x(m,τ)

t )

log

(
p(y(p,τ)

t′ , x(m,τ)
t )

p(y(p,τ)
t′ )p(x(m,τ)

t )

)
dy(p,τ)
t′ dx(m,τ)

t

(5)

which, by stationarity depend only on t′ − t.
Temporal dynamics and Mutual Information. To charac-
terize the nonlinear temporal dynamics of process X , we

propose here the original use of mutual information for
Y = X and t′ − t = pτ :

I(m,p,τ)(X) = I(x(p,τ)
t+pτ , x

(m,τ)
t ) . (6)

We will refer to this quantity as auto-mutual information of
order (m, p). Intuitively, I(m,p,τ)(X) measures information
shared by successive m-point and p-point dynamics, as the
concatenation of x(p,τ)

t+pτ and x(m,τ)
t corresponds exactly to the

(m+ p)-dimensional time-embedded vector x(m+p)
t :(

x(p,τ)
t+pτ , x

(m,τ)
t

)
= x(m+p,τ)

t .

Entropy Rates and Auto-Mutual Information. The entropy
rate can be rewritten as:

h(m,τ)(X) = H(X)− I(m,1,τ)(X) . (7)

Interestingly, this splits h(m,τ)(X) into two contributions:
H(X) only depends on the one-point statistics of X and
is hence a static property. I(m,1,τ)(X) gathers all informa-
tion conveyed by linear and non linear temporal dynamics,
irrespective of the variance of X [21].

For illustration, when X is a stationary jointly Gaussian
process, hence fully defined by its variance σ2 and normal-
ized correlation function c(τ) (such that c(τ = 0) = 1), one
has:

H(m,τ)(X) = m
2 log(2πeσ2) + 1

2 log(|Σ(m)|) (8)

h(m,τ)(X) = 1
2 log(2πeσ2)− 1

2 log( |Σ(m)|
|Σ(m+1)| ) (9)

I(m,1,τ)(X) = 1
2 log( |Σ(m)|

|Σ(m+1)| ), (10)

where Σ(m) is the m-dimensional correlation square matrix
of the process and |Σ| = σ.

These equations clearly illustrate that I(m,1,τ)(X) consists
of the temporal dynamics in h(m,τ)(X), once the contribu-
tion of the static (one-point) statistics has been removed.

B. Estimation procedures

Nearest Neighbors. To estimate the information theoretic
quantities defined above, we propose to use Nearest Neigh-
bors procedures, as promoted by [17], [22] for Entropy
and [23] for mutual information. In essence, the k-nearest
neighbor algorithm computes the distance ε̂ at which the k-th
nearest neighbor of the current point x(m,τ)

t is located. In the
following, Ĥ and Î(m,p,τ) denote the resulting estimators of
Shannon entropy and mutual information, from which ĥ(m,τ)

is derived by plugging Ĥ and Î(m,p,τ) into Eq.(7).
Correlation Integrals, Approximate Entropy (ApEn) and
Sample Entropy (SampEn). Aiming to compare the pro-
posed quantities and estimation procedures, we recall ele-
mentary facts about Approximate Entropy [24] and Sample
Entropy [25], [26], classically and massively used to quantify
nonlinear complexities in biomedical data. These quantities
naturally depend on τ . However, for ease of exposition, the
dependency on τ is herefafter omitted.

Up to a constant, ApEn can be considered an estimate of
the entropy rate h, while SampEn constitutes an estimate
of the order 2 Renyi entropy rate [27]. These estimates
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Fig. 1. Box plot based comparisons of the five different (normalized)
estimates for Normal (N) and pathological (A for ”abnormal”), for Stage I
(top) and Stage II (bottom).

are however based on using Correlation Integral procedures,
which reverse the perspective compared to Nearest Neighbor
algorithm: Correlation Integrals are coarse-graining the data
at scale ε, which amounts to neglect all details at scales finer
than ε and outputs the number k̂ of neighbors available at
that scale. In practice, SampEn is considered to improve on
ApEn as it shows lower sensitivity to parameter tuning and
data sample size than ApEn [25], [28].

In the following we computed both quantities using our
own Matlab implementation (based on Physio-Net packages).
The corresponding estimates are ApEn(m) and SampEn(m).

IV. INTRAPARTUM FETAL HEART RATE ANALYSIS

Parameter setting. For the Nearest neighbor based esti-
mations of Î(m,p) and ĥ(m), We set k = 5, m = 2,
p = 1. For the Integral correlation based estimations of
ApEn(m) and SampEn(m), we used the commonly accepted
value, ε = 0.2σ, with σ the standard deviation of X , and
m = 2. For all quantities, a single τ was used. Indeed, it is
well documented [9] that BpM FHR times series essentially
contain no relevant information above fmax = 2Hz, which
leads to set gap τ = 5 = fs/fmax, actually corresponding
to a delay of 0.5.
Fetal acidosis detection. Estimations are performed on the
last 20 minutes of data before delivery, either in Stage I
or Stage II. For each stage independently, the ability of
the estimated information theoretic quantities to discrim-
inate fetuses suffering from fetal acidosis (referred to as
Abnormal, A) from healthy ones (referred to as Normal, N)
is studied. For illustration, Fig. 1 reports the box plots of
the normalized (zero-mean, unit-variance) estimates for each

Phase I Phase II
auc pval auc pval

ApEn2 0.76 4.08e-06 ∗ 0.61 1.33e-01
SampEn(2) 0.79 5.92e-07 ∗ 0.67 2.35e-02 ∗

ĥ(2) 0.50 9.75e-01 0.39 1.36e-01
Ĥ 0.76 8.36e-06 ∗ 0.56 4.23e-01

Î(2,1) 0.84 2.00e-09∗ 0.68 1.69e-02 ∗

TABLE I
AUC AND P-VALUE. AREA UNDER ROC CURVES (AS SHOWN IN FIG. 2)

AND P-VALUE OBTAINED FROM THE WILCOXON RANKSUM TEST, FOR

EACH OF THE FIVE DIFFERENT ESTIMATES.

five different estimates, for Stage I and Stage II. Table I
quantifies the visual representations in Fig. 1 by reporting,
for each estimate, the p-value obtained from applying the
classical Wilcoxon ranksum test, testing non-parametrically
the null hypothesis that there is no difference between the
median of the distribution of the estimates for the normal
and abnormal classes. Additionally, Fig. 2 compares ROC
(Receiver Operational Characteristics) curves for several
estimates, the corresponding AUC (Area Under Curve) are
also reported in Table I .
Stage I. For Stage I, Table I and Figs. 1 and 2 indicate a

striking result: while ĥ(2) does not discriminate classes A and
N, Ĥ and Î(2,1) do, very clearly. Interestingly, this shows that
during Stage I a mere static effect, essentially the variance
of the marginal distribution of FHR times series, permit
discrimination. This discrimination is however significantly
enhanced when using Î(2,1). This clearly indicates, that
beyond the mere variance, temporal dynamics provide a
crucial quantity to look at to achieve efficient detection
of fetal acidosis. In addition, merging static and dynamics
information into ĥ(2) yields a masking effect that degrades
the discrimination ability.

While ĥ(2) estimated by Nearest Neighbor procedures is
not significative, ApEn and SampEn, estimating equivalent
quantities by means of Integral Correlation procedures, are
able to discriminate the classes A and N. As ApEn and
SampEn where shown to be poorer estimates than ĥ(2) [27],
this surprising result can be interpreted as a secondary benefit
of biases in the estimation, that for this application act
positively in favor of discrimination. This will be further
studied. In all cases, Î(2,1) significantly outperforms all
other quantities both in terms of p-value and AUC, thus
clearly emphasizing the benefits of using nonlinear temporal
dynamics after removing all static information.
Stage II. The results reported here for Stage II differ
significantly from those of Stage I. First, they show that
a decrease in performance of all estimated quantities, thus
confirming that the well-known fact that the analysis of Stage
II is far more intricate than that of Stage I. Second, only
two (Î(2,1) and SampEn) out of the five quantities are now
able to perform discrimination, thus showing that temporal
dynamics in Stage II differ notably for those of Stage I, as
recently evidenced quantitatively in [29]. Interestingly the
sole one-point statistics Ĥ is no longer significant in Stage
II. The reasons why SampEN appears significant while ApEn
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Fig. 2. Compared ROC curves for SampEnm, ApEnm and hm, for Stage
I (left) and Stage II (right)

no longer is remains under investigations. The fact that Î(2,1)

is the quantity that achieves the best performance in terms
of p-value and AUC clearly underlines that the analysis of
nonlinear temporal dynamics is critical for fetal acidosis
detection in Stage II.

V. CONCLUSIONS AND FUTURE WORKS

This contribution has promoted the use of mutual informa-
tion applied to different embedding of BpM FHR times series
as a mean to characterize non linear temporal dynamics.
It has first proposed to split entropy rates into two terms,
one quantifying static properties of the data only versus
one associated with nonlinear temporal dynamics. These
information theoretic quantities were related to the classical
ApEn and SampEn both in terms of interpretations and
of estimation issues. Further, applied to two large datasets
of FHR data, it has been shown that mutual information
constitutes a very promising tool for fetal acidosis detection,
both during Stage I and Stage II. The behavior of the several
estimated quantities also suggest that temporal dynamics
in Stage II differs significantly form those of Stage I, as
recently quantified in [29]. These outcome clearly highlight
the importance of an accurate analysis of nonlinear dynamics
for fetal acidosis detection.

The ability of mutual information to focus on various
nonlinear aspect of temporal dynamics by varying the em-
bedding order m and p, and by varying τ are currently being
explored, with very promising preliminary results. This is
under quantification.
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