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ABSTRACT

Multi-dimensional magnetic resonance spectroscopy is an
important tool for studying molecular structures, interactions
and dynamics in bio-engineering. The data acquisition time,
however, is relatively long and non-uniform sampling can be
applied to reduce this time. To obtain the full spectrum,a
reconstruction method with Vandermonde factorization is
proposed.This method explores the general signal property
in magnetic resonance spectroscopy: Its time domain signal
is approximated by a sum of a few exponentials. Results
on synthetic and realistic data show that the new approach
can achieve faithful spectrum reconstruction and outperforms
state-of-the-art low rank Hankel matrix method.

Index Terms— Magnetic Resonance Spectroscopy, Van-
dermonde factorization, Hankel matrix, Low rank

1. INTRODUCTION

Magnetic resonance spectroscopy (MRS) has been regarded
as an indispensable tool in studying a molecular structure
and dynamics or interactions of biopolymers in chemistry
and biology. However, the duration of a multi-dimensional
MRS experiment is proportional to the number of measured
data points and increases rapidly with spectral resolutionand
dimensionality. The non-uniform sampling (NUS) approach
offers a general solution for a dramatic reduction in mea-
surement time. Reconstructing the full signal from a non-
uniformly sampled signal is essential for the next step of data
analysis. The reconstruction may be successful by exploiting
the inherent structure of the signal in the time or frequency
domains.

One line of work is concerned with the sparsity of MRS
in the frequency domain. Compressed sensing (CS) [1]
suggests that if the signal enjoys a sparse representation in
some transform domain, it is possible to recover a signal
even when the number of samples is far below its ambient
dimension. CS has been demonstrated as an effective tool for
reconstructing NUS spectrum by assuming that the spectrum
is sparse in the frequency domain [2, 3, 4]. However, broad
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peaks inevitably results in loss of sparsity since more non-
zeros are presented in the spectrum [5]. This limitation of CS
lead to the degeneration of reconstruction performance.

Another line of work is concerned with the low rankness
of MRS signals in the time domain. The time domain
signal of MRS is called the free induction decay (FID),
which is generally approximated by a sum of a few decaying
exponential functions. By transforming the FID into a so
called Hankel matrix, the number of exponentionals will
equal to the rank of this matrix [6]. Assuming the number
of spectral peaks is much smaller than the FID data points,
the low rank Hankel matrix completion (LRHMC) [5] was
proposed to recover the FID signals in the NUS MRS. Unlike
CS, which seeks the sparsity of the spectrum in the frequency
domain and encounters problems to represent the signals
with fast decay, LRHMC tried to minimize the number of
peaks. Experimental results on simulated and real MRS data
show that broad peaks can be recovered by LRHMC much
better than thel1 norm minimization on the spectrum [5].
The recovery condition of low rank Hankel matrix under
uniformly random sampling and Gaussian random encoding
can be found in [7] and [8], respectively.

In LRHMC, the connection between exponentials and
matrix structures is still not fully explored. For example,it is
still unclear how the signal subspace is related to each specific
exponential function. Taking this into account, we propose
to use the Vandermonde structure of the Hankel matrix
to reconstruct the FID. These exponentials are explicitly
presented in the Vandermonde decomposition of the Hankel
matrix. This nice property allows enforcing more matrix
structures in the signal model thus has great potential to
improve the spectrum reconstruction. Experiment results on
synthetic data and real MRS data show that the new approach
requires significantly fewer measurements than LRHMC to
achieve a faithful reconstruction of the FID.

The rest of this paper is organized as follows. Section
2 introduces related work. Section 3 presents the proposed
Hankel matrix completion with Vandermonde factorization
(HVaF) method . Section 4 presents the numerical results on
both simulated and real-world data. Section 5 concludes this
work and discusses some future work.
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2. RELATED WORK

Let R be a Hankel operator which maps a vectorx ∈ C
n to

a Hankel matrixRx ∈ Cn1×n2 with n1 + n2 = n + 1 as
follows

[Rx]ij = xi+j , ∀i ∈ {0, . . . , n1−1}, j ∈ {0, . . . , n2 − 1},

In particular, we denote the Hankel operator byH instead of
R in the casen1 = n2.

The LRHMC [5] is based on the observations that the
Hankel matrixRx constructed by the FIDx is low rank if the
number of spectral peaks is much smaller than the data points
in the whole spectrum. Hence, the reconstruction problem
can be formulated as the low rank matrix completion problem

min
x

‖Hx‖
∗
+

λ

2
‖y −Dx‖

2
2 , (1)

wherex is the acquired NUS FID data,D is an operator
of the NUS schedule,‖·‖

∗
is the nuclear norm defined as a

sum of matrix singular values. The efficiency of LRHMC has
been verified on numerical simulations and real MRS data [5].
However, we will present in Section 3 that the Hankel matrix
of the FID has Vandermonde factorization and experiment
results in Section 4 show that the new approach exploiting
Vandermonde factorization can achieve much better recon-
struction than LRHMC from the same NUS data.

3. HANKEL MATRIX COMPLETION WITH
VANDERMONDE FACTORIZATION

The general signal property in MRS that FID can be approx-
imated by a sum of a few decaying exponentials has been
widely acknowledged [5, 6]. Let vectory ∈ C2N−1 be the
complete FID

yk =

R
∑

r=1

dre
−k∆t/τr+i2πfrk∆t, (2)

wheredr, τr andfr are the complex amplitude, decay time
and frequency, respectively, of thek-th exponential.

Let definezr = e−∆t/τr+i2πfr∆t. It is observed that the
Hankel matrix of the FIDy ∈ C2N−1 admits a Vandermonde
factorization

Hy =






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
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R
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
.

(3)

Obviously, (3) can be easily rewritten as a form of the product
of two factor matrices and this paper focus on the latter form.

Note that we choose the dimension ofy to be odd simply
to yield a squared matrixHy. Actually, our algorithm and
results do not rely on the dimension being odd.

In this paper, we formulate the signal reconstruction as
Hankel matrix completion with Vandermonde factorization.
Specifically, we aim to findx, the Hankel matrix of which
can be factorized into two Vandermonde matrices, i.e.,Hx =
UVH with U and V Vandermonde matrices. To force
U andV to be Vandermonde matrices is equal to restrict
each column ofU andV to contain single component of
exponential function. According to Kroneckers theorem [9],
we can equally constrain the Hankel matrix of each column
of U andV to be rank 1. Therefore the optimization (3) can
be equivalently rewritten as

find x,U,V (4)

s.t. rank(R(U(:,r))) = 1, rank(R(V(:,r))) = 1,

Hx = UVH , y = Dx, for all r ∈ {1, . . . ,K}.

Given that it is difficult to develop a reliable and compu-
tational algorithm to solve the rank-constrained problem and
the measurements in MRS experiments are usually contami-
nated by bounded noise, we relax (4) and solve the following
problem instead

min
U,V,x

K
∑

r=1

(‖RQrU‖
∗
+ ‖RQrV‖

∗
)+

λ

2
‖y −Dx‖22 . (5)

s.t.Hx = UVH .

To solve (5), we develop an algorithm based on half
quadratic methods with continuation for its advantage in
handling multivariable optimization [10]. We introduce the
term

∥

∥Rx−UVH
∥

∥

2

F
to keepRx close enough toUVH

instead of addressing the constraintRx = UVH directly,
and propose the following optimization,

min
U,V,x

K
∑

r=1

(‖RQrU‖
∗
+ ‖RQrV‖

∗
) +

β

2

∥

∥Hx−UVH
∥

∥

2

F

+
λ

2
‖y −Dx‖

2
2 .

(6)

Whenβ → ∞, the solution to (6) is approaching to (5). To
solve (6), some auxiliary variables are introduced into model
(6), and then (6) is reformulated into the following equivalent
form:

min
U,V,x

K
∑

r=1

(‖Br‖∗ + ‖Cr‖∗) +
β

2

∥

∥Hx−UVH
∥

∥

2

F

+
λ

2
‖y −Dx‖

2
2 ,

(7)

s.t. Br = RQrU, Cr = RQrV.



In (7), the first two terms are non-smooth but separable,
and the other terms are smooth, which makes it relative easier
than (6) in developing numerical algorithms. For a givenβ,
we solve (7) by Alternating Direction Method of Multipliers
(ADMM)[5]. The details of the new algorithm are omitted
here due to limited space.

4. NUMERICAL EXPERIMENTS

In this section, we will evaluate the performance of the
proposed HVaF on synthetic data and real MRS. The state-
of-the-art LRHMC [5] is compared with HVaF. The NUS
is Poisson-gap sampling [11]. We empirically observe that
HVaF is very robust toK and thus we setK to be 64 in all
the experiments of this paper.

4.1. Synthetic data

Fig. 1 shows comparisons between a simulated fully sampled
reference spectrum and its NUS reconstructions obtained us-
ing the LRHMC and HVaF algorithms. The simulated signals
with 127 points are generated according to (2). The relative
least normalized error (RLNE) is defined by‖x− y‖2/‖y‖2,
wherex andy are the reconstructed signal and true signal. It
is observed that when sampling rate is relatively high, both
LRHMC and HVaF can achieve a reconstruction with low
RLNE; however, as sampling rate decreases, HVaF obtains a
significantly lower RLNE than LRHMC. Thus HVaF requires
fewer NUS samples to achieve faithful reconstructions than
LRHMC. In particular, the line shape of the low-intensity
peak can be preserved better by HVaF than LRHMC.

4.2. Realistic MRS data

Here we apply the proposed HVaF to recover a 2-D spectrum
with the size 512×255 from the NUS FID. Fig 2 shows a NUS
2D 1H-15N HSQC spectrum of the intrinsically disordered
cytosolic domain of human CD79b protein from the B-cell
receptor (More details about the MRS data and experiment
setting can be found in [5]). Obviously, the HVaF produces
the more faithful recovery (Fig. 2(c)) of the ground truth
(Fig. 2(a)) than LRHMC (Fig. 2(b)). To clearly compare
the reconstructed results, we present one of the slices in the
reconstruction. Fig. 2(d) illustrates that several low-intensity
peaks are notably compromised in the LRHMC spectrum,
while HVaF succeeds to recover most of the peaks.

5. CONCLUSION AND DISCUSSION

We develop the HVaF reconstruction as a new technique
to obtain high-quality spectra from non-uniform sampling
measurements. HVaF explores the Vandermonde structure of
the Hankel matrix constructed by the FID instead of the low
rank structure in LRHMC. Note that HVaF does not introduce

Ground

(a)

(b)

Fig. 1: Reconstructions of the synthetic spectrum containing
five peaks. Fig. 1(a) The reconstructions by LRHMC and
HVaF from 25% NUS. Fig. 1(b) The reconstruction RLNE
with respect to different sampling rates. The error bars arethe
standard deviations of the RLNE over 100 NUS resampling
trials.

extra assumptions on the signal compared with LRHMC.
The method allows the more reduction in measurement time
and achieves more faithful reconstruction than LRHMC. The
Vandermonde factorization method will also be extended to
the high-dimensional MRS reconstruction [12].
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Fig. 2: The LRHMC and HVaF reconstructions in the 2D1H-15N HSQC spectrum experiment. (a) the uniformly-sampled
spectrum; (b) and (c) and are the LRHMC and HVaF reconstructions using 17% sampled data, respectively. (d) the slice of the
reconstructions located at the 8.25 ppm in the dimension of1H.
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