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Abstract— In this paper, we present a comprehensive compar-
ison of wavelet features for the classification of snore sounds.
Wavelet features have proven to be efficient in our previous
work; however, the benefits of wavelet transform energy (WTE)
and wavelet packet transform energy (WPTE) features were not
clearly established. In this study, we firstly present our updated
snore sounds database, expanded from 24 patients (collected by
one medical centre) to 40 patients (collected by three medical
centres). We then study the effects of varying frame sizes and
overlaps for extraction of the wavelet low-level descriptors, the
effect of which have yet to be fully established. We also compare
the performance of the WTE and WPTE features when fed into
multiple classifiers, namely, Support Vector Machines (SVM),
K-Nearest Neighbours, Linear Discriminant Analysis, Random
Forests, Extreme Learning Machines, Kernel Extreme Learning
Machines, Multilayer Perceptron, and Deep Neural Networks.
Key results presented indicate that, when fed into a SVM,
WTE outperforms WPTE (one-tailed z-test, p< 0.002). Further,
WPTE can achieve a significant improvement when trained by
a k-nearest neighbours classifier (one-tailed z-test, p < 0.001).

I. INTRODUCTION

Affecting 13 % of men and 6 % of women in the US popula-
tion [1], Obstructive Sleep Apnoea (OSA) is a chronic sleep-
related disorder which increases the risk for cardiovascular
diseases [2], hypertension [3], and stroke [4]. Snoring, as a
common symptom of OSA (reported in more than 80 % of
OSA patients [5]), has been studied to find an acoustic-based,
non-invasive method for diagnosing OSA [6], [7].

On the other hand, studies which aim to identify the site
of vibration and obstruction in the upper airways during
snoring are quite limited. A recent literature review on this
subject identified a total of eight publications [8]. In medical
practice, understanding the mechanisms of snore generation
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is helpful for Ear, Nose, and Throat (ENT) surgeons when
planning a targeted surgical intervention.

In terms of automatic acoustic analysis, frequency fea-
tures [9], [10], amplitude features [11], statistical time series
features [12], and psychoacoustic features [13] have been
analysed for their potential to distinguish different snore
sound (SnS). However, state-of-the-art machine learning
techniques were not employed in these studies.

II. RELATION TO PRIOR WORK

Wavelet features have been explored for the classification of
different SnS types [14]. The authors found that wavelets had
a superior performance for this task over other frequently-
used features such as Mel-frequency cepstral coefcients
(MFCCs), formants and power ratios. However, the data used
was small (only 24 patients, without a development set).
A bag-of-audio-words approach, which combined MFCC,
formant and wavelet features, was recently shown to improve
on the performance of SnS classification when compared to
(non-bagged) wavelets [15]. Again, these results are limited
by the size of the associated data set.

In this study, we firstly expand the database used in [14],
[15] to a larger size (from 24 patients’ data collected by one
medical centre to 40 patients’ data provided by three medical
centres). Secondly, we investigate the effects of varying
wavelet frame sizes and overlaps on classification perfor-
mance of two kinds of wavelet features. Thirdly, in [14], only
Support Vector Machines (SVMs) were employed for the
classification task; the performance of other machine learning
models was not tested. Therefore, in this work, we compare
the two feature sets’ classification capacity by feeding them
into a range of different classifiers.

The rest of this paper is organised as follows: The SnS
database and methods used are introduced in Section III. The
experimental results and discussion follow in Section IV, and
Section V, respectively. Section VI contains the conclusions.

III. MATEARIALS AND METHODS

A. Snore Sounds Database

We collected SnS data of 40 patients, from 3 clinical
sites: Klinikum rechts der Isar, Munich, Germany; Alfried
Krupp Hospital, Essen, Germany; and, University Hospital
Halle (Saale), Germany, during a drug-induced sleep en-
doscopy [16]. The demographic information of the patients
is shown in Table I.

An ENT expert labelled the SnS data according to their
excitation location using the classes the velum (V), the
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TABLE I
THE DEMOGRAPHIC INFORMATION OF THE 40 PATIENTS WHICH

COMPRISE OUR SNS DATASET. BMI: BODY MASS INDEX; AHI: APNEA

HYPOPNEA INDEX.

MEAN STD RANGE

Age (years) 47.4 11.50 26–71
BMI (kg/m2) 26.9 3.06 21.2–38.4
AHI (events/h) 21.7 12.77 1.3–59.1

TABLE II
NUMBER OF SUBJECT INDEPENDENT SEGMENTS FOR EACH SNORE-TYPE

IN OUR SNS DATASET.

train dev test ∑

V 363/[7] 104/[2] 152/[2] 619/[11]
O 326/[7] 125/[2] 122/[2] 573/[11]
T 289/[4] 90/[2] 78/[2] 457/[8]
E 323/[6] 96/[2] 148/[2] 567/[10]
∑ 1 301/[24] 415/[8] 500/[8] 2 216/[40]

oropharyngeal area including the palatine tonsils (O), the
tongue base (T) and the epiglottis (E). Details on the data
collection process and the anatomical positions of V, O,
T, and E in the upper airway can be found in [17]. We
segmented the original snoring events into 200 ms units with
an overlap of 50 %. We partitioned the collected data into
subject independent train, development (dev), and test sets
as displayed in Table II.

B. The WTE and WPTE Feature Sets

This section gives a brief overview of the wavelet transform
energy (WTE), and the wavelet packet transform energy
(WPTE) features; for a more detailed description the reader
is referred to [17]. Khushaba et al. first employed WPTE
for classification of drowsiness levels based on EEG, EOG,
and ECG signals [18]. WTE is the energy related features
generated by the wavelet transform (WT), whereas WPTE
is the coefficients generated by wavelet packet transform
(WPT). Compared with the WT, the WPT decomposes both
the approximation and the detailed part of the original
analysed signal [19]; i. e., WT uses low pass filters only,
while WPT uses both low pass filters and high pass filters.

For the WTE features, we generate 4× (Jmax +1) features
as low-level descriptors (LLDs), where Jmax is the maxi-
mum decomposition level of any particular wavelet function
(‘sym3’ in this study1). For the WPTE features, we generate
2Jmax+1−1 LLDs. In addition, we apply confined functionals
to the LLDs, i. e., the maximum, mean and minimum values,
and the bias of the estimated linear regression of the frame-
level features in one segment, which have proven to be
efficient in [17]. Thus, in total we extract 16× (Jmax + 1)
WTE features and 4× (2Jmax+1 −1) WPTE features. Before
being fed into a classifier, all the original extracted feature
are normalised into a scale of [0, 1].

1The wavelet function names and the decomposition
scripts are based on the Wavelet Toolbox of Matlab by
MathWorks R©(http://www.mathworks.com/products/wavelet/).

TABLE III
INFORMATION OF EACH FEATURE SET.

16 ms 32 ms 64 ms

Jmax 5 6 7
WTE Dimension 96 112 128
WPTE Dimension 252 508 1 020
WTE+WPTE Dimension 348 620 1 148

TABLE IV
THE MAIN OPERATING PARAMETERS AND GRID SEARCH SPACE FOR

EACH CLASSIFIER TESTED.

Classifiers Main Parameters
SVM kernels: ‘linear’, ‘polynomial’,

‘radial basis function’, ‘sigmoid’;
C-value: 10−5, 10−4, · · · , 104, 105

K-NN K-value: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100;
distance metrics: ‘euclidean’, ‘cityblock’, ‘chebychev’,
‘correlation’, ‘cosine’, ‘hamming’, ‘jaccard’,
‘minkowski’, ‘seuclidean’, ‘spearman’

LDA discriminant type: ’linear’,’diaglinear’,’pseudolinear’;
gamma: 0:0.05:1.00

RF number of trees: 21, 22, · · · , 29, 210;
fraction for the treebagger: 0.1:0.1:1.00

ELM activation functions: ‘signmoidal’, ‘sine’, ‘hardlim’,
‘tribas’, ‘radbas’;
number of hidden neurons: 21, 22, · · · , 214

KELM kernels: ‘radial basis function’, ‘linear’,
‘polynomial’, ‘wavelet’;
regularization coefficients: 10−5, 10−4, · · · , 104, 105

MLP two hidden layers; neurons: 21, 22, · · · , 29, 210

DNN structured by two-layer stacked auto-encoders,
neurons: [64 64], L2: 10−3, · · · , 103;
Sparsity Proportion: 0.1:0.1:0.9;
Sparsity Regularization: 2

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We conduct two comparative tasks on the WTE and WPTE
features to investigate the effects on classification perfor-
mance by (i) varying frame sizes and overlaps when ex-
tracting the LLDs, and (ii) by varying the classifier used.
For the frame sizes and overlaps test we conducted a grid
search using frame sizes of 16 ms, 32 ms, and 64 ms and
overlaps of 25 %, 50 %, and 75 % resulting in nine different
combinations.

The decomposition levels and the dimensions of each kind
of wavelet feature is given in Table III. It can be seen that
the WPTE feature set has a much larger dimensionality than
the WTE set. In particular, at a decomposition level of 7, the
dimensionality of the WTE features is approximately 10 %
of the WPTE features.

For classifiers, we test and compare: Support Vector
Machines (SVM) [20], k-Nearest Neighbours (k-NN) [21],
Linear Discriminant Analysis (LDA) [21], Random Forests
(RF) [22], Extreme Learning Machines (ELM) [23], Ker-
nel Extreme Learning Machines (KELM) [24], Multi-
layer Perceptrons (MLP) [25], and Deep Neural Networks
(DNN) [26]. Table IV shows the main operating parameters
and grid search space for each classifier. All the parameters
are optimised by the dev data set, with all stated dev data
set results being the best performance from among these
settings. For the comparison of frame sizes and overlaps, a
SVM (implemented by LIBSVM [27]) is employed as the

3738

                                                                                                                                               



TABLE V
THE UNWEIGHTED AVERAGE RECALLS [%] ACHIEVED BY WTE AND WPTE FEATURE SETS WITHIN VARIED FRAME SIZES AND OVERLAPS. THE

CLASSIFIER IS A SVM AND PARAMETRES WERE OPTIMISED BY THE DEV SET.

Frame Size 16 ms 16 ms 16 ms 32 ms 32 ms 32 ms 64 ms 64 ms 64 ms
Overlap 25 % 50 % 75 % 25 % 50 % 75 % 25 % 50 % 75 %

WTE

train vs dev 50.0 51.3 50.6 46.2 46.8 46.6 45.0 44.8 45.8
train vs test 61.4 55.5 65.2 65.2 60.1 57.8 66.3 65.8 64.7
train+dev vs test 58.7 55.3 65.3 61.3 51.8 54.4 54.5 61.9 59.9
mean 56.7 54.0 60.4 57.6 52.9 52.9 55.3 57.5 56.8
std ±5.96 ±2.37 ±8.46 ±10.04 ±6.72 ±5.74 ±10.67 ±11.17 ±9.82

WPTE

train vs dev 50.8 49.2 48.6 54.9 53.3 60.1 52.2 53.6 50.2
train vs test 44.9 49.8 35.0 50.1 49.2 45.4 48.7 48.9 39.3
train+dev vs test 48.4 43.0 35.1 45.2 46.2 47.0 49.6 47.7 47.8
mean 48.0 47.3 39.6 50.1 49.6 50.8 50.2 50.1 45.8
std ±2.97 ±3.76 ±7.82 ±4.85 ±3.56 ±8.06 ±1.82 ±3.12 ±5.73

WTE+WPTE

train vs dev 50.1 50.2 50.0 49.7 50.8 51.0 50.7 49.9 50.4
train vs test 55.5 49.3 54.5 46.9 51.6 50.3 51.9 47.5 44.8
train+dev vs test 62.7 59.3 63.7 48.1 47.5 49.0 48.8 49.7 47.4
mean 56.1 52.9 56.1 48.2 50.0 50.1 50.5 49.0 47.5
std ±6.32 ±5.53 ±6.98 ±1.40 ±2.17 ±1.01 ±1.56 ±1.33 ±2.80

TABLE VI
UNWEIGHTED AVERAGE RECALLS [%] ACHIEVED BY WTE AND WPTE FEATURE SETS WITHIN VARIED CLASSIFIERS. WTE FRAME SIZE: 16 MS,

OVERLAP: 75 %; WPTE FRAME SIZE: 32 MS, OVERLAP: 75 %.

Classifiers SVM K-NN LDA RF ELM KELM MLP DNN

WTE

train vs dev 50.6 51.7 53.1 47.0 51.9 52.5 54.1 50.1
train vs test 65.2 52.4 57.0 58.3 56.6 52.8 47.4 41.6
train+dev vs test 65.3 53.7 54.7 58.5 46.5 52.1 48.3 44.4
mean 60.4 52.6 54.9 54.6 51.7 52.5 49.9 45.4
std ±8.46 ±1.01 ±1.96 ±6.58 ±5.05 ±0.35 ±3.64 ±4.33

WPTE

train vs dev 60.1 50.0 50.9 49.4 52.7 51.2 61.2 59.4
train vs test 45.4 61.9 58.9 43.0 43.1 43.6 43.8 48.3
train+dev vs test 47.0 61.9 52.4 42.5 43.1 42.7 44.6 44.1
mean 50.8 57.9 54.1 45.0 46.3 45.8 49.9 50.6
std ±8.06 ±6.87 ±4.25 ±3.85 ±5.54 ±4.67 ±9.82 ±7.91

WTE+WPTE

train vs dev 49.9 55.7 52.0 49.8 57.3 55.2 61.4 57.0
train vs test 52.0 61.1 64.6 48.7 33.3 40.5 52.0 40.4
train+dev vs test 52.1 62.5 64.0 60.6 43.3 36.0 50.7 25.0
mean 51.3 59.8 60.2 53.0 44.6 43.9 54.7 40.8
std ±1.24 ±3.59 ±7.11 ±6.58 ±12.06 ±10.04 ±5.84 ±16.00

classifier because of its robust classification performance.
Due to the imbalanced distribution of the SnS data, we
use the unweighted average recall (UAR), i. e., the averaged
accuracy by each individual class, as the evaluation metric.
To test the significance level between results from different
experimental configuration, a one-tailed z-test [28] is per-
formed.

B. Results

As can be seen in Table V, the frame size and overlap used
when exacting the wavelet LLDs impacts SVM classification
performance. Considering the mean performance, the optimal
configuration for the WTE and WPTE features are 16 ms
(75 % overlap), and 32 ms (75 % overlap), respectively. When
comparing the strongest test set performances the WTE
features achieved a UAR of 16.2 percent points higher than
the WPTE features (p< 0.001). The fusion of the two feature
sets results in a slight decrease compared with the WTE
features alone, which achieved a best UAR of 63.7 %, and a
mean UAR of 56.1 %.

As can be seen in Table VI, the best results were gained
either with a SVM or a k-NN classifier. When compared
with SVM, k-NN significantly improves the performance
of the WPTE features (mean UAR of 50.8 % vs 57.9 %,

p < 0.05). Further, even though the results are close to each
other, the WTE features achieved the strongest performance
(mean UAR at 60.4 % – SVM), followed by the fusion of
the two features (mean UAR at 60.2 % – LDA), and then
the WPTE features (mean UAR at 57.9 % – k-NN). Taking
feature dimensionality into account (see Table III), these
results indicate that WTE uses less features to capture more
SnS information when compared with WPTE.

V. DISCUSSION

Results gained in this study indicate that changing the frame
size and overlap when extracting the underlying wavelet
LLDs impacts the performance of a SVM classifier (see
Table V). For the WTE features, the UARs vary from 44.8 %
to 66.3 % (p < 0.001), while for the WPTE features, the
UARs vary from 35.0 % to 60.1 % (p < 0.001).

Further results of interest are that, when combined with a
SVM classifier, the WTE feature set outperformed the WPTE
features on the test set (maximum UAR: 66.3 % vs 50.1 %,
p < 0.001), and the fusion of the two feature sets achieves
no significant improvement (maximum UAR is 63.7 %). For
the WPTE features, the use of a k-NN classifier increases
test set performance by 11.8 percent points compared with
the SVM (p < 0.001).
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When looking at the mean UARs (see Table VI), SVM,
k-NN, and LDA are the best suited classifiers for the WTE
features, the WPTE features, and their fusion respectively. It
is worth noting that for the WTE features, the SVM’s mean
UAR (60.4 %) is higher than that achieved by the LDA’s
mean UAR (54.9 %) at a significant level (p < 0.05). Finally,
most likely limited by the small size of the SnS corpus, the
DNN and MLP classifiers did not prove to be efficient.

VI. CONCLUSION
In this paper we conducted a comparative work to evaluate
two kinds of wavelet features; wavelet transform energy
(WTE), and wavelet packet transform energy (WPTE), for
their performance when classifying snore sounds. Key results
indicate that, the frame size, and overlaps, can effect the
final classification performance for both of the two wavelet
features. When used in combination with a Support Vector
Machine, the WTE features can outperform the WPTE
features at a significant level of p < 0.002 (one-tailed z-
test). Further, the WPTE features can reach up to an UAR at
61.9 % when combined with a k-Nearest Neighbour classifier.

We observed that state-of-the-art machine learning meth-
ods including Extreme Learning Machines, and Deep Neural
Networks were not as efficient when compared to conven-
tional classifiers (e. g., SVM); however, given the the small
size of the database used, this may be less surprising. In
future work, we will collect more snore sounds data from a
larger population of patients, and re-investigate the potential
of wavelet features combined with deep neural networks.
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