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Abstract

Alzheimer’s Disease (AD) is one of the leading causes of death and dementia worldwide. Early 

diagnosis confers many benefits, including improved care and access to effective treatment. 

However, it is still a medical challenge due to the lack of an efficient and inexpensive way to 

assess cognitive function [1]. Although research on data from Neuroimaging and Brain Initiative 

and the advancement in data analytics has greatly enhanced our understanding of the underlying 

disease process, there is still a lack of complete knowledge regarding the indicative biomarkers of 

Alzheimer’s Disease. Recently, computer aided diagnosis of mild cognitive impairment and AD 

with functional brain images using machine learning methods has become popular. However, the 

prediction accuracy remains unoptimistic, with prediction accuracy ranging from 60% to 88% 

[2,3,6]. Among them, support vector machine is the most popular classifier. However, because of 

the relatively small sample size and the amount of noise in functional brain imaging data, a single 

classifier cannot achieve high classification performance. Instead of using a global classifier, in 

this work, we aim to improve AD prediction accuracy by combining three different classifiers 

using weighted and unweighted schemes. We rank image-derived features according to their 

importance to the classification performance and show that the top ranked features are localized in 

the brain areas which have been found to associate with the progression of AD. We test the 

proposed approach on 11C- PIB PET scans from The Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database and demonstrated that the weighted ensemble models outperformed 

individual models of K-Nearest Neighbors, Random Forests, Neural Nets with overall cross 

validation accuracy of 86.1% ± 8.34%, specificity of 90.6% ± 12.9% and test accuracy of 80.9% 

and specificity 85.76% in classification of AD, mild cognitive impairment and healthy elder 

adults.

I. INTRODUCTION

As one of the compelling unsolved medical problems, Alzheimer’s Disease (AD) affects 

more than 5.3 million patients in the United States of America [1]. AD is an irreversible 

chronic neurodegenerative disease that is the most common form of dementia. The incidence 

of dementia caused by AD has become a significant social problem. There has been 

extensive ongoing research about early diagnosis and treatment of AD, but early diagnosis 
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remains a medical challenge due to the absence of a definitive diagnosis test for AD. In fact, 

less than 50% of the people with AD are being diagnosed accurately with the disease based 

on clinical symptoms [1]. The positron emission tomography (PET) imaging is a non-

invasive, three-dimensional imaging modality that uses radioactive substance to detect 

functional changes in the brain. PET imaging has been recently identified as a major 

advancement in the detection of AD [2]. The tracer, Carbon 11-labeled Pittsburgh 

Compound B (11C- PIB), has shown more uptake in the brains of patient with AD than in 

those of control group, especially in the area thalamus, putamen, caudate, hippocampus and 

subcortical white matter of the patients [2]. Thus, a region-based analysis of 11C- PIB PET 

scans that addressed those critical brain areas is expected to generate optimistic prediction 

performance.

Recent advances in computer aided diagnosis (CAD) systems have shown potentials in 

providing accurate diagnosis of the AD using brain function images [3] However, the 

prediction accuracy of AD, especially among patients with mild cognitive impairment (MCI) 

was approximately 70% [4]. Besides, most present CAD systems are based on support 

vector machine (SVM) [3,4,5]. Although SVM has been the most commonly used classifier, 

it has limited performance in the presence of noise and outliers, which is abundant in PET 

imaging data. Moreover, because of relatively small sample size and the amount of noise in 

functional PET imaging data, a single classifier cannot achieve good general performance. It 

is well-known in the artificial intelligence field that ensemble methods can be used for 

improving general classification performance and alleviate the potential data overfitting [6]. 

Previous study has demonstrated the potential of ensemble methods in improving prediction 

accuracy of AD in PET imaging data. C. Cabral et al [7] classified AD, MCI and Control 

(CN) in Fluorodeoxyglucose-(FDG) PET images using favorite class ensemble methods, 

which composed of three base classifiers, each trained with different feature subsets. 

However, their proposed ensemble method only utilized single type of classifier and average 

voting to generate final decision, which could be biased and prone to noise due to the 

limitation of unweighted voting and single type of classifier. In present study, we addressed 

this challenge by proposing an ensemble classification of 11C-PIB PET scans from 

Alzheimer’s disease neuroimaging initiative (ADNI) participants. In this approach, the 

classification produced in first iteration is used as “prior knowledge” to generate both 

weighted and unweighted ensemble of different classifiers.

II. METHODOLOGY

In this work, we performed a systematic analysis of 11C- PIB PET scans to refine the 

current knowledge regarding the indicative biomarkers of AD and to improve AD diagnosis 

precision (Figure 1). After obtaining data from ADNI database and perform image 

processing, we extracted volume, texture and voxel features across different brain areas 

segmented. We then performed classification using individual classifiers, such as Random 

forests, k-Nearest Neighbors and Neural Nets. Finally, we combined the decision of three 

individual classifiers using weighted and unweighted voting.
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A. Data

Data used in the preparation of this study were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was initiated in 

2003 and led by Principal Investigator Michael W. Weiner, MD. The study aims to test 

whether serial magnetic resonance imaging, PET, other biological markers and clinical and 

neuropsychological assessment can be used to measure the progression of MCI and early 

AD. In this study, the preprocessed 228 11C-PIB PET image volumes from 103 ADNI 

participants were acquired from the ADNI database. Preprocessing steps performed by 

ADNI are: co-registration, average, standard space transformation, voxel normalization and 

smoothing with 8mm FWHM filter.

B. Image Processing

PET scans were processed automatically (Figure 2), using FSL Toolbox (Oxford University, 

UK) [8]. First, the images were skull-stripped to remove non-brain tissue. To enable robust 

registration, all images were then aligned to standard space, ICBM152 space [9]. Next, 

tissue segmentation is performed to segment the images into Grey Matter (GM), White 

Matter (WM) and Cerebrospinal fluid (CSF). Finally, we performed volume segmentation to 

extract useful brain areas that have been found to show increased 11C- PIB uptake in AD 

patients by previous study [2, 10–13]. The extracted brain areas are Thalamus, Brainstem, 

Hippocampus, Amygdala, Putamen, Pallidum, Accumbens, and Caudate. In our study, a 

total of 208 out of 228 PET scans, which have sufficient quality to provide us with 

successful volume segmentation of the listed eight brain areas through the processing steps 

(Figure 2) were utilized for further analysis.

C. Feature Extraction

We extracted three types of features to be used as classification features: volume, voxel 

intensities and texture. Volumes of the eight extracted brain areas were calculated from the 

binary mask. We calculated volumes of WM, GW, CSF from the probability tissue maps 

[14]. Using segmented binary masks, the voxels within all tissue types and brain areas were 

extracted. We performed texture analysis to extract energy, entropy and 13 Haralick texture 

features [15]. Energy and entropy were calculated from multiwavelet transformation [15]. 

Haralick’s texture features were calculated using 64 gray-level co-occurrence matrix 

(GLCM) in 8 directions [15]. Since there is a lack of established way to perform three-

dimensional texture analysis, we extended two-dimensional texture analysis for three-

dimensional texture analysis. For each volume, texture features of each slice were averaged 

to generate the final value.

C. Feature Selection

Minimum redundancy maximum relevance feature selection method (mRMR) was used to 

minimize redundancy and select features according to measures of relevance and 

dependence [16]. Up 300 features were selected and used by the classifiers. The number of 

features used by each classifier was optimized by 10-fold cross validation (CV). Considering 

the total sample size is 208, a maximum of 300 features would be appropriate.
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D. Classification

Features selected by mRMR were used by baseline classifiers for prediction of CN, AD and 

MCI. The baseline classifiers adopted in this study were K-Nearest Neighbors (kNN), 

Random Forests (RF), and Neural Nets (NN). These classifiers are commonly used 

classifiers and are suitable for solving high dimensional, multi-class classification problems 

where there is relatively small amount of training samples. SVM is not selected since it is 

inherently binary classifier. Classification scores, which are the predicted class posterior 

probabilities, were generated from the classifiers.

1) Hyper parameter selection: hyper parameters of different classifiers, such as the hidden 

layers of neural nets, the number of nearest neighbors of kNN and the number of single 

decision trees in the RF, were optimized using grid search in 10-fold CV.

2) Ensemble decision: the classification score from baseline classifiers were assembled 

using weighted and unweighted voting schemes.

In unweighted voting scheme, the new classification scores were computed by averaging the 

classification scores from three baseline classifiers. The new decision label is the class that 

has largest classification score.

In weighted voting scheme, we first determined the weight for each classifier using the 

following equation [6]

log( accuracy
1 − accuracy )

where accuracy refers to the classification accuracy of individual classifiers. The weight 

adjusted the relative importance of each classifiers so that the accuracy performance of each 

classifier is proportional to its weight. In weighted voting scheme, the weighted average of 

classification scores from baseline classifiers is the new classification scores, which were 

then used to compute new decision labels.

E. Evaluation

Dataset was separated into 20% testing data and 80% training data. Hyparameters and the 

number of features selected were optimized using 10-fold CV on training data. The final 

model was trained on entire set of training data with optimized hyperparameters and 

evaluated on 20% testing data. Performance metrics reported in this study are: Accuracy, 

Specificity and Pearson’s correlation coefficient (PCC). Mean values with standard 

deviations were reported (mean ± standard deviation).

III. RESULTS

As described above, each classifier classified 208 PET image scans into categories of CN, 

MCI and AD. The performances of three individual classifiers and two ensemble classifiers 

are compared. In this dataset, there were 47 instances of CN, 99 instances of MCI, and 62 

instances of AD.
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A. Classification Results

The results obtained from classification experiments are shown in Table II. The best CV 

performance of 86.1% ± 8.34% accuracy, 90.6% ± 12.9% specificity and the best test 

performance of 80.9% accuracy, 85.76% specificity were achieved by weighted ensemble 

classifier.

In terms of individual classifiers, the results of RF, kNN and NN are drastically different. RF 

achieved 74.5% overall test accuracy and 82.0% specificity while the overall test accuracy of 

KNN and NN are 61.3%, 63.4% and specificity of 66.5% and 65.3% respectively. Besides, 

the CV performance of RF is much better than kNN and NN interms of accuracy, specificity 

and PCC across three classes. The superiority of RF over kNN and NN could attribute to the 

fact that when training set is small, high bias classifiers, such as single decision tree, which 

is the base unit of RF, have an advantage over low bias classifiers, such as kNN since the 

latter will overfit. Besides, RF by itself, is an ensemble method that uses a multitude of 

simple decision trees. Decision trees are weak learners and might have better prediction in 

regards to this classification problem.

In regards to ensemble methods, the unweighted ensemble classifier has overall test 

accuracy of 70.1% and 62.5% specificity. The weighted ensemble classifier achieved highest 

accuracy in CN, MCI and AD, and highest specificity in MCI and AD. The unweighted 

ensemble classifier outperforms NN and KNN in terms of overall accuracy, PCC and 

specificity.

However, RF and weighted ensemble classifier performs much better than unweighted 

ensemble classifier in almost all areas of measurements. The superiority of weighted 

ensemble classifier over unweighted ensemble classifier conforms with our expectation since 

unweighted average of decision values could lead to biased performance. The presented 

results indicate that the weighted ensemble method that combines multiple classifiers has 

great potential to enhance the overall diagnosis precision of AD.

B. Feature Analysis

To determine the most important features for the classification methods, top ranked features 

from mRMR were investigated, as shown in Table I. Although there is some variability in 

the feature ranked by different classification methods, there are several highly ranked 

common features. Haralick texture features are ranked the highest and among them, 

correlation feature [15], which measures the gray tone linear-dependencies and information 

measure of correlation [15], are the most important. Highly ranked brain regions are: Grey 

Matter [2], Caudate [10], Putamen [11] and Thalamus[12] in descending sequence. These 

highly ranked brain areas conform with the important brain areas found by previous study 

that exhibit marked 11C-PIB uptakes in patients with AD and MCI, comparing with that in 

normal elders [2, 10–13].
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IV. CONCLUSION & FUTURE WORK

Recently, computer aided diagnosis (CAD) systems using brain images has become popular 

in AD diagnosis [3]. However, the prediction accuracy of AD, especially among patients 

with mild cognitive impairment (MCI) was only approximately 70% [4].

In this study, we achieved high AD and MCI diagnosis accuracy with ensemble learning 

methods that combine different types of classifiers, such as NN, RF and kNN, as well as to 

refine current knowledge regarding brain areas associated with 11C- PIB. Both weighted 

ensemble methods and unweighted ensemble methods were tested on 11C- PIB PET image 

dataset from ADNI. The top features ranked by classifiers are in the brain areas that have 

been found to associate with the progression of AD [2]. We showed that the ensemble 

method, where the proportion of the decision was based on the performance of individual 

classifier outperformed individual classifiers, with best overall CV accuracy of 86.1% ± 

8.34%, CV specificity of 90.6% ± 12.9%, best overall test accuracy of 80.9% and specificity 

of 85.76%. This result also outperforms most state-of-art computer-aided AD diagnosis 

systems with accuracy of 60% to 88%. Besides, we have also confirmed that the highly 

ranked common features are in brain areas that have been found to be related with the 

progression of AD. The results have demonstrated the potential value of 11C-PIB in 

improving AD diagnosis accuracy as an indicative biomarker of AD.

Our work, however, currently only addressed 11C- PIB PET image datasets while other 

tracers such as FDG and Florbetapir are also suggested as core biomarkers for AD. In the 

future, we would like to compare the performance of proposed methods on different PET 

imaging datasets. We would also like to develop ensemble methods that can integrate PET 

imaging datasets from different PET imaging tracers such as Florbetapir, FDG and 11C- 

PIB.
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Figure 1. 
Schematic diagram of Proposed Study
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Figure 2. 
Schematic diagram of iamge processing
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TABLE I.

TOP FEATURES RANKED BY MRMR FEATURE REDUCTION METHOD.

Rank Region Feature

1 Gray Matter Haralick feature (correlation)

2 Gray Matter Haralick feature (correlation)

3 Right Caudate Haralick feature (correlation)

4 Right Caudate Haralick feature (Information Measure of Correlation I)

5 Right Putamen Voxel intensity

6 Right Thalamus Haralick feature (Information Measure of Correlation I)

7 Right Thalamus Voxel intensity

8 Left Thalamus Voxel intensity

9 Right Caudate Voxel intensity

10 Left Putamen Voxel intensity
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