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Abstract— Computer science and machine learning in partic-
ular are increasingly lauded for their potential to aid medical
practice. However, the highly technical nature of the state of
the art techniques can be a major obstacle in their usability
by health care professionals and thus, their adoption and
actual practical benefit. In this paper we describe a software
tool which focuses on the visualization of predictions made
by a recently developed method which leverages data in the
form of large scale electronic records for making diagnostic
predictions. Guided by risk predictions, our tool allows the
user to explore interactively different diagnostic trajectories,
or display cumulative long term prognostics, in an intuitive
and easily interpretable manner.

I. INTRODUCTION

With an increased availability of digitalized medical in-
formation (scans, records of diagnoses, prescriptions, and
treatments, etc.) recent years have been witnessing an in-
creasing amount of research attention on the use of modern
computer science – namely, machine learning, data mining,
pattern recognition, and others – in medicine and health care.
These efforts range greatly in nature and include those which
focus on improving diagnosis [13], incentivizing behavioural
change [12], [15], measuring the penetration of health care
advice [6], assessing provider-patient interaction quality [4],
and numerous others [8]. Considering that there is a major
technical (and, arguably, methodological) gap between health
care professionals and computer scientists, the question of
how machine extracted information is communicated is cru-
cial [5]. In some applications this is easier than in others. For
example, a decision on the diagnosis is usually quite simple
to convey (though the process through which a machine
reached this decision may not be, which can be an important
issue in its own right as well) [10]. However, certain types
of information are much more difficult to communicate in a
manner which is readily understood by individuals who are
not experts in computer science. Indeed, in the present paper
our aim is to bridge this representational gap in the context
of a recently developed algorithm which uses large amounts
of electronic medical records to predict the probability of
future diagnostic events.

II. UNDERLYING MODEL

For completeness herein we present a summary of the key
ideas of the adopted method. For in-depth technical details,
and the related discussion and results, the reader is referred
to the original publication [1] as well as the body of related
follow-up work [18], [16], [19].

A. Electronic medical records

Large amounts of medical data are routinely collected
and stored in electronic form by health providers in most
developed countries. This is a rich data source which contains
a variety of information about each patient including the
patient’s age and sex, mother tongue, religion, marital status,
profession, etc. In the context of the present work, of main
interest is the information collected each time a patient is
diagnosed with an ailment. In particular, the diagnosis is
recorded using a standardized coding schema such as that
provided by the International Statistical Classification of
Diseases and Related Health Problems (ICD-10) [20] or the
related Australian Refined Diagnosis-Related Groups (AR-
DRGs), which have hierarchical structures [3].

B. Underlying model

The predictions the present work aims to visualize are
underlain by the epidemiological predictions of the model
originally introduced by Arandjelović [2]. The model pre-
dicts the probability of a specific diagnosis a following the
patient history H:

p(H → a|H). (1)

The difficulty of formulating this as a tractable learning
problem lies in the fact that the space of possible histories
is infinite as H can be of an arbitrary length. Even if the
length l(H) is limited, the number of possible histories
is extremely large: [l(H)]na where na is the number of
different diagnosis codes. Therefore it is necessary to make
an approximation which constrains and simplifies the task.
Consider a particular diagnosis history H = d1 → . . .→ dn.
The adopted method makes use of the observation that when
it comes to chronic diseases, the very presence of past
complications strongly predicts future complications [11],
[9]. Thus, a history H is represented using a history vector
v = v(H) which is a fixed length vector with binary values.
Though seemingly crude this representation has been used
with success in other domains too [7]. Each vector element
corresponds to a specific diagnosis code (except for one
special element explained shortly) and its value is 1 if and
only if the corresponding diagnosis is present in the history:

∀d ∈ D. v(H)i(d) =

{
1 : ∃j. H = H1 → dj → H2 ∧ d = dj

0 : otherwise



Fig. 1. The main window of our visualization tool.

where D is the set of diagnosis codes, i(d) indexes the di-
agnosis code d in a history vector, and H1,2 may take on de-
generate forms of empty histories. By collapsing an arbitrary
length history of diagnoses onto a fixed length vector, the
space of possible states over which learning is performed is
dramatically reduced and the problem immediately made far
more tractable. Notice the importance of the observation that
it is the presence of past complications which most strongly
predicts future ailments, given that under this representation
any information on the ordering of diagnoses is discarded.
The binary nature of the representation also has the effect
of reducing the size of the space over which inference
is performed. In this case, this is achieved by discarding
information on the number of repeated diagnoses and in this
manner it too predicates the overwhelming predictive power
of the presence of history of a particular ailment, rather than
the number of the corresponding diagnoses.

The disease progression modelling problem at hand is
thus reduced to the task of learning transition probabilities
between different patient history vectors:

p(v(H)→ v(H ′)). (2)

It is important to observe that unlike in the case of Markov
process models working on the diagnosis level when the
number of possible transition probabilities is close to na

2,
here the transition space is far sparser. Specifically, note that
it is impossible to observe a transition from a history vector
which codes for the existence of a particular past diagnosis
to one which does not, that is:

v(H)i(d) = 1 ∧ v(H ′)i(d) = 0⇒ p(v(H)→ v(H ′)) = 0.
(3)

The converse does not hold however. Moreover, possible
transitions can be only those which include either no changes
to the history vector (repeated diagnosis) or which encode

exactly one additional diagnosis. This gives the upper bound
for the number of non-zero probability transitions of na ×
2na . In practice the actual number of transitions is far smaller
(several orders of magnitude) which allows the learnt model
to be stored and accessed efficiently.

The final aspect of the proposed model concerns transi-
tions with probabilities which do not vanish but which are
nonetheless very low. These transitions can be reasonably
considered to be noise in the sense that the corresponding
probability estimates are unreliable due to low sample size.
Hence diagnosis history vectors are constructed using only
the n̂d most common diagnoses and merge the remaining
nd − n̂d types into a single special code ‘other’. Thus, the
dimensionality of diagnosis history vectors becomes n̂d +1.
The soundness of this approach is evidenced by statistics
which show that only a small number of diagnosis types
covers a vast amount of all data. For example the top 30
most frequent types account for 75% of all diagnoses.

III. VISUALIZATION

There are several noteworthy aspects of the data and the
model summarized in the preceding section which make vi-
sualization difficult. Firstly, even if a reduced set of diagnoses
is considered, the number of diagnoses of interest and their
potential relationships already pose a challenge. An approach
which highlights salient information and which allows the
user control over how information is organized is highly de-
sirable. Secondly, much of the inner workings of the model,
which are mathematical, are not readily understandable by a
non-specialist. Yet they have a profound significance. Being
able to display probabilistic information, especially when it
exhibits itself in a cumulative manner over simulated time, is
crucial in making the system useful to health care providers.

In the next section we start by laying out the main
design of our application and explaining the key visualization
tools we employ. The main functionality of the application



captured by this section allows the health care practitioner
to visualize immediate risk and explore different disease
progression alternatives in a simple manner. This section
is followed up by sections which detail a series of useful
extensions to the basic functionality. These allow for the
visualization of long term risk using different prediction
paradigms.

A. Main visualization framework
As explained in the previous section, the cornerstone

representation in the model which we build our visualization
around comprises vectors with binary entries. This concep-
tually simple representation allowed us to come up with an
elegant design which immediately draws the user’s attention
to salient features in a patient’s medical history. The main
window of our application is shown in Figure 1. To start,
consider the bottommost row of filled circles. Each circle
corresponds to a diagnosis included in the predictive model,
as indicated by the corresponding diagnostic code under-
neath. Notice that the only aspect in which the appearance
of a circle can vary is its colour. In particular, we denote
diagnoses present in a patient’s history using dark blue and
those which are not present using light blue.

Next, observe that there are multiple histories displayed
concurrently. The bottommost history, labelled ‘Initial His-
tory’, corresponds to the history from which the space
of possible diagnostic trajectories is explored. In clinical
practice this initial history will usually be the diagnostic
record of a patient at admission. Thereafter exploration pro-
ceeds by the user selecting a specific diagnosis (by clicking
the corresponding circle). This action changes the history
denoted ‘Current History’ which corresponds to the current
state in the exploratory process and is guided by information
in the topmost row. Unlike the three other rows which display
the same type of information, namely diagnostic histories,
the circles in this row also vary in their size and colour
which encode the probability of a specific diagnosis given
the current diagnostic history, estimated using the model
detailed in the previous section. Thus, the user is informed in
the exploratory process and can pursue possible diagnostic
futures which are more likely.

B. Selective emphasis
Recall that the original work which introduced the adopted

prediction model based the diagnostic history vector on the
30 most common diagnoses. This is a sufficiently low num-
ber to allow for the visualization described in Section III-A
to appear uncluttered on most devices. However, subsequent
work has demonstrated that the model is successful even
with the inclusion of a much greater number of diagnoses
which can be of clinical interest [17]. Attempting to vi-
sualize these in the same manner clearly poses problems
with clutter and the ease with which diagnoses of interest
can be observed. To overcome this obstacle we came up
with two solutions. Firstly, we allow the user to select or
deselect specific diagnoses from being visualized. Deselected
diagnoses are still included in the predictive model but their
states are not displayed in the main window. Secondly, we
make use of the hierarchical nature of diagnostic coding. In

Fig. 2. Selector of diagnoses of interest. Diagnoses can be selected or
deselected for display purposes, or grouped according to the hierarchy of
the used diagnostic coding schema.

particular, our application supports several common coding
schemes, including ICD-10 and AR-DRG, and thus allows
for diagnoses to be grouped according to the subtree in
the hierarchy. In other words, rather than displaying related
diagnoses separately, the user can choose to unify these and
visualize merely that any of the diagnoses of a specific group
are present. As before, if more granularity is desired at any
point, the option can be changed and individual diagnoses
displayed, given that it is only the visualization which is
altered and not the underlying predictive model.

C. Additional prognostics

The exploration of diagnostic futures described thus far
is local in the sense that the user can see the predictions of
short term risks and using this information make incremental
moves through the tree of different possibilities. However,
considering that the original work has demonstrated good
performance on the task of long term prediction, we also
sought ways of visualizing this aspect of the model too. This
information is useful in that it can be time saving, more
incentivizing to patients, and direction providing in incre-
mental exploration. Hence, we provide the option to display
an additional type of prediction. In particular, we sample
ultimate diagnostic histories reached from the current history
and display the probability of each diagnosis according to
the proportion of ultimate histories in which it appears. As
before, probabilities are encoded using size and colour, as
shown in Figure 3.



Fig. 3. Ultimate condition weighted prognosis shows the proportion of ultimate histories in which different diagnoses appears.

IV. SUMMARY AND FUTURE WORK

In this paper we described a visualization tool capable of
displaying the predictions of a recently introduced machine
learning based algorithm shown to be effective at predicting
the risk of different ailments based on a patient’s current
diagnostic history. Our visualization approach makes use
of several key properties of the adopted algorithm and the
structure of data. The binary history vector at the heart of the
adopted model naturally led us to an intuitive colour-coding
of the presence of a specific diagnosis and the exploration
of different future progressions by simple mouse clicks. On
the other hand, the hierarchical form of common diagnosis
coding schemas allows us to keep the visualization compact
and clutter-free, by including options to group diagnoses
by hierarchical similarity and by facilitating the hiding of
diagnoses which are not of interest. In addition to interactive
incremental exploration of a patient’s state, our tool also
includes the possibility of showing long term prognostics
based on probabilistic sampling of different progression
trajectories. Our current research efforts which build upon
the present contribution are aimed at increasing the amount
of visualized information – and the inclusion of temporal
(rather than merely sequential) statistics – while retaining
simplicity of use and ease of comprehension by health care
professionals [14].
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[19] I. Vasiljeva and O. Arandjelović. Diagnosis prediction from electronic
health records (EHR) using the binary diagnosis history vector repre-
sentation. Journal of Computational Biology, 2017.

[20] World Health Organization. International statistical classification
of diseases and related health problems., volume 1. World Health
Organization, 2004.


