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Abstract— We are developing an autonomously updating 

brain machine interface (BMI) utilizing reinforcement learning 

principles. One aspect of this system is a neural critic that 

determines reward expectations from neural activity. This 

critic is then used to update a BMI decoder towards an 

improved performance from the user’s perspective. Here we 

demonstrate the ability of a neural critic to classify trial reward 

value given activity from the primary motor cortex (M1), using 

neural features from single/multi units (SU/MU), and local field 

potentials (LFPs) with prediction accuracies up to 97% correct. 

A nonhuman primate subject conducted a cued center out 

reaching task, either manually, or observationally. The cue 

indicated the reward value of a trial. Features such as power 

spectral density (PSD) of the LFPs and spike-field coherence 

(SFC) between SU/MU and corresponding LFPs were 

calculated and used as inputs to several classifiers. We conclude 

that hybrid features of PSD and SFC show higher classification 

performance than PSD or SFC alone (accuracy was 92% for 

manual tasks, and 97% for observational). In the future, we 

will employ these hybrid features towards our autonomously 

updating BMI. 

I. INTRODUCTION 

Over the past several years, brain machine interface 
(BMI) technology has grown significantly to help research 
participants with motor disabilities control computer cursors 
[1] or robotic prosthetic limbs [2]. Traditionally, BMI 
decoders have been trained using supervised learning 
techniques to translate movement-related neural information 
from the motor cortex. However, supervised learning based 
BMIs require an explicit training set of both neural and 
kinematic data to learn the BMI output commands [3], and 
thus can’t easily be updated in real world use situations.  

To address this challenge, we are currently developing a 
reinforcement learning (RL) based BMI that can update 
autonomously using an evaluative feedback signal provided 
by a neurally derived critic [4-9]. Such an RL-BMI’s 
performance is directly dependent on the fidelity of the 
neural critic, and therefore accurate classification of neural 
activity by the critic is helpful. To advance the neural critic 
accuracy, we used frequency domain features including 
power spectral density (PSD) from an ensemble’s averaged 
local field potential (LFPs), and spike-field coherence (SFC) 
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to classify the neural activity in the primary motor cortex 
(M1) from center-out reaching tasks differing in reward 
expectation on a trial-by-trial basis. PSD of LFPs have been 
used extensively for neural data analysis, and SFC has been 
used for cross-scale interaction analysis between the 
microscale, spikes, and macroscale, LFPs [10-12]. We tested 
classification performance on different conventional 
classifiers and feature sets, and found that hybrid features 
(PSD and SFC) achieved a higher classification accuracy 
than individual PSD or SFC features. The use of real-time 
computable hybrid features resulted in a near perfect 
classification accuracy and should be advantageous in the 
autonomous updating of the online BMI control. 

II. METHODS 

A. Psychophysical Tasks and Neural Data Recording 

One macaque monkey was implanted in the left M1. We 
used 96-channel platinum microelectrode arrays (10 x 10 
Utah array with 1.5 mm deep electrodes separated by 400 
µm, Blackrock Microsystems) to simultaneously record 
single-unit (spikes) and LFPs. All procedures were approved 
by SUNY Downstate Medical Center’s (IACUC) and 
complied with the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals. 

The monkey was trained on two tasks, manual and 
observational. For the manual task, the monkey performed 
one target center-out reaching movements with its right arm 
resting comfortably inside a two-joint exoskeletal robot 
(KINARM system, BKIN Technologies), Figure 1(a). During 
the observational task, the monkey passively observed the 
movement of a feedback cursor from the center to the 
peripheral target on the display screen while the KINARM 
was locked in place, Figure 1(b). Each trial consisted of four 
events, center hold, cue onset, reach to target and target hold. 
For the manual task, the monkey initiated a trial by fixating 
and holding the center target until the color cued peripheral 
reach target indicating the rewarding or non-rewarding 
outcomes was presented. Next, the monkey waited for 300 
ms until the color-cued center target disappeared 
(representing an implicit GO cue). To complete the trial 
successfully, the monkey had to hold on the peripheral target 
position for 325 ms following a successful reach to the target. 
Every successful reach for a cued rewarding trial ended with 
a juice reward while no reward was given for successful cued 
non-rewarding trials. To encourage reaching movements in 
all trials, an unsuccessful cued non-rewarding trial was 
always followed by another non-rewarding trial. Similar to 
the manual task, visual color cues were presented during the 
observational task. The order of rewarding and non-
rewarding trials was randomly chosen in the manual tasks 
whereas the reward and non-rewarding trials were presented 
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in a predictable sequence, reward followed by non-rewarding 
trial repeated, during the observational tasks [6]. 

Multichannel acquisition processor systems (Plexon Inc.) 
were used to simultaneously record spiking activity and LFPs 
from contralateral M1 at a sampling rate of 40 KHz and 2000 
Hz respectively. The composite signal (consisting of spikes 
and LFPs) were pre-amplified and band-pass filtered from 
0.5 to 300 Hz for LFPs and 170 Hz to 8 kHz for single-unit 
activity. We recorded from 32 LFP channels and 174 units 
(80 units for manual task and 94 units for observational task) 
in M1 while the monkey performed/observed the center-out 
reaching tasks. 

 

 

Figure 1. Schematic of the (a) manual task and (b) observational task. 

B. Classification Procedure 

Figure 2 shows the flowchart for the proposed 
classification process using PSD, SFC and hybrid features: 
(1) recording of spike trains and corresponding LFPs, (2) 
calculation of PSD and SFC, respectively, (3) applying 
normalization, (4) reducing dimensionality of PSD, SFC, and 
hybrid features, (5) classification and cross-validation, (6) 
comparing classification accuracies. The preprocessing for 
feature extraction was performed with MATLAB, and the 
classification and validation were implemented in Python 
with TensorFlow and Scikit-Learn machine learning libraries. 

C. Feature Selection and Extraction 

PSD and SFC were measured and used as hybrid features 
to discriminate between rewarding and non-rewarding trials. 
For both PSD and SFC measures, we used a post-cue-onset 
period of 800 ms for the manual task and 2 seconds for the 
observational task. Before computing PSD of the LFPs, 60 
Hz line noise and harmonics were eliminated using a second-

order notch filter. For analyses, we only selected LFP 
channels with signal-to-noise ratios (SNR) ≥ 4. After 
normalizing each LFP channel using min-max normalization 
method, the SNR was calculated for each channel as the ratio 
of peak-to-peak amplitude of averaged LFP and twice the 
standard deviation of the residual signal (given by the 
difference of ith channel’s LFP and the averaged LFP) as 
shown in (1) [13] 

 SNRi = Apk-pk / (2 * SD ( LFPi – avg ( LFP ) ) ) 

We then averaged the selected LFP channels which were 
later used for PSD and SFC computations. The PSD was 
computed from LFP traces using the Welch periodogram 
method [14] with 75% overlapping windows. Normalization 
was applied to each power spectrum by dividing power at 
each frequency by the sum of all power from 0.5 to 100 Hz 
[15]. 

 
 

 

Figure 2. Flowchart of the proposed classification procedure using hybrid 

features. 

SFC has been used to measure phase relationships 
between spikes and LFPs. SFC was computed using the 
coherence equation shown in (2) [10-12] 

 CSL = abs ( SSL / sqrt ( SS * SL ) ) 

Equation 2 shows that the CSL can be calculated as the 
ratio of SSL (cross spectrum between spikes and LFPs) and 
the square root of the product of spectra of spikes (SS) and 
LFPs (SL). SFC (CSL) returns a value that ranges from 0 to 1. 
SFC value of 1 indicates perfect phase dependency between 
spikes and LFPs, and a value 0 means no phase dependency 
between them. 
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The extracted features such as PSD and SFC were stored 
in a feature matrix. In this matrix, each row corresponds to 
each trial during both rewarding and non-rewarding trials, 
whereas columns correspond to features. To configure hybrid 
features, all attributes of PSD features were shifted and 
rescaled to the same ranges of SFC features (ranging from 0 
to 1). PSD and SFC features were then concatenated. 

For classification, PSD, SFC, and integrated features were 
reduced to two dimensions by transforming the data using 
one of two dimensionality reduction techniques. We either 
integrated linear and nonlinear dimensionality reduction (also 
known as manifold learning), or used manifold learning 
alone. Principal Component Analysis (PCA) was used to 
reduce the feature’s dimensionality with an explained 
variance ratio of 95% first and then Multidimensional Scaling 
(MDS) was applied [16, 17], or we used a t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [18] method alone, 
as these two methods consistently outperformed others we 
tested. We chose the best results from these two methods for 
Tables 1 and 2, as indicated. 

D. Classification 

The extracted feature vectors that are obtained from PSD, 
SFC methods and their hybrid were given as input to widely 
used classifiers, such as Multi-Layer Perceptron Network 
(MLP), k-Nearest Neighbors (kNN), Radial Basis Function 
kernel Support Vector Machines (RBF SVM), Gaussian 
Naive Bayes and Gaussian Process. The MLP classifier was 
composed of three layers of neurons, an input layer, a hidden 
layer and an output layer. The hidden layer was composed of 
100 ReLU (rectified linear) neurons. Stochastic gradient 
descent optimizer for MLP was used to minimize the loss 
function. The kNN classifier was trained for 3 neighbors on 
the training set. The parameters of the RBF SVM were 
assigned as gamma = 2 and C = 1. Gaussian Naive Bayes and 
Gaussian Process were applied with default parameter 
settings as suggested by Scikit-Learn. 

E. Validation 

In order to validate the proposed classification, a ten-fold 
cross-validation was performed for splitting datasets into ten 
consecutive folds. Each fold was used once as a validation 
set, while the rest of the folds were used for training. In 
addition, the performance of classification, such as 
accuracies, sensitivities, and specificities were computed, as 
given in the Equations (3), (4) and (5). 

 Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 Sensitivity = TP / (TP + FN) 

 Specificity = TN / (TN + FP) 

Here TP, TN, FP and FN denote the number of true 
positives, true negatives, false positives, and false negatives, 
respectively. 

III. RESULTS 

In order to classify reward expectation from neural 

activity in M1 into rewarding and non-rewarding trials in the 

post-cue period, neural features such as PSD, SFC and their 

hybrid were computed, and applied as input data to different 

conventional classifiers such as MLP, kNN, RBF SVM, 

Gaussian Naive Bayes and Gaussian Process. The 

classification performance was then calculated by applying 

accuracy, sensitivity and specificity using ten-fold cross-

validation. Finally, we investigated the comparison of 

classification performance calculated across five different 

classifiers and each feature set. 

Table 1 and 2 represent the classification comparison for 

manual and observational tasks, respectively. For manual 

tasks, PCA+MDS method was used for MLP and Naive 

Bayes classifiers whereas t-SNE method was used for the 

other three classifiers. For observational tasks, we used 

PCA+MDS for Naive Bayes classifier whereas t-SNE was 

used for all other classifiers. The results, as shown in Table 

1, indicate that hybrid of PSD and SFC features for the 

manual task produces higher classification performance than 

individual PSD or SFC features. The MLP using hybrid 

features yielded higher classification performance (accuracy, 

sensitivity and specificity are all 92%) as compared to other 

classifiers. Similar to the classification results for the manual 

task, the MLP using hybrid features for the observational 

task also achieved the highest classification performance 

(accuracy = 97%, sensitivity = 96%, and specificity = 97%) 

as shown in Table 2.  

 
TABLE 1. CLASSIFICATION ACCURACY FOR MANUAL TASKS 

(AVERAGE ± STANDARD DEVIATION). (I): PCA+MDS, (II): T-SNE. 

Classifiers Features (%) Accuracy (%) Sensitivity (%) Specificity (%) 

MLP 

PSD (I) 76 ± 10 79 ± 10 78 ± 8 

SFC (I) 83 ± 16 88 ± 14 83 ± 12 

Hybrid (I) 92 ± 10 92 ± 8 92 ± 9 

kNN 

PSD (II) 75 ± 13 76 ± 15 79 ± 14 

SFC (II) 73 ± 15 77 ± 17 77 ± 18 

Hybrid (II) 78 ± 12 75 ± 9 79 ± 16 

RBF SVM 

PSD (II) 75 ± 9 77 ± 12 80 ± 5 

SFC (II) 72 ± 16 77 ± 13 76 ± 12 

Hybrid (II) 78 ± 10 81 ± 9 79 ± 14 

Naive Bayes  

PSD (I) 81 ± 5 79 ± 8 83 ± 11 

SFC (I) 82 ± 16 80 ± 16 84 ± 13 

Hybrid (I) 85 ± 11 82 ± 8 84 ± 9 

Gaussian 

Process 

PSD (II) 80 ± 8 78 ± 5 79 ± 4 

SFC (II) 80 ± 15 79 ± 16 80 ± 11 

Hybrid (II) 86 ± 8 89 ± 16 87 ± 10 

 
TABLE 2. CLASSIFICATION ACCURACY FOR OBSERVATIONAL 

TASKS (AVERAGE ± STANDARD DEVIATION). (I): PCA+MDS, (II): 

T-SNE. 

Classifiers Features (%) Accuracy (%) Sensitivity (%) Specificity (%) 

MLP 

PSD (II) 78 ± 6 77 ± 8 80 ± 10 

SFC (II) 67 ± 9 67 ± 8 71 ± 10 

Hybrid (II) 97 ± 4 96 ± 5 97 ± 5 

kNN 

PSD (II) 72 ± 11 71 ± 7 73 ± 9 

SFC (II) 66 ± 10 69 ± 7 69 ± 13 

Hybrid (II) 93 ± 4 92 ± 9 93 ± 6 

RBF SVM 

PSD (II) 75 ± 4 73 ± 5 75 ± 7 

SFC (II) 65 ± 7 64 ± 9 66 ± 10 

Hybrid (II) 93 ± 5 89 ± 8 94 ± 5 

Naive Bayes  

PSD (I) 76 ± 9 75 ± 9 75 ± 7 

SFC (I) 65 ± 12 63 ± 5 69 ± 13 

Hybrid (I) 89 ± 5 87 ± 8 88 ± 5 

Gaussian 

Process 

PSD (II) 78 ± 8 75 ± 6 75 ± 6 

SFC (II) 66 ± 11 64 ± 13 63 ± 10 

Hybrid (II) 93 ± 3 91 ± 4 95 ± 6 

 

We also compared the classification accuracy of our 

classifiers with the PSD, SFC or their hybrid (reduced 
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dimension) features as inputs based on receiver operating 

characteristic (ROC) curves as well as the area under the 

ROC curve (AUC). Figure 3 displays the ROC curves with 

AUC values for the MLP using PSD, SFC, and hybrid for 

manual (a) and observational (b) tasks (ROC curves for 

other classifiers not shown). As shown in Fig. 3, the AUCs 

of the ROC curve of MLP using hybrid features are larger 

than using individual PSD or SFC features for both manual 

and observational tasks. 

 

 
Figure 3. ROC curves with AUC values of MLP methods for testing set 
using PSD (blue), SFC (green), and Hybrid (red) for (a) manual and (b) 

observational task. 

IV. DISCUSSION AND CONCLUSION 

The results of this study indicate that reward expectation 

from M1 neural activity can discriminate between rewarding 

and non-rewarding trials during both reaching movements 

(manual tasks) and passive observations (observational 

tasks) [6]. We showed, using common classifiers, that 

integration of neural features such as PSD and SFC provide 

higher classification accuracy than either one individually. 

Moreover, a relatively simple MLP classifier yielded the 

highest classification performance as compared to other 

classifiers. We also found that choosing one dimensionality 

reduction method over the other was a tradeoff between 

computation time and classification performance. Average 

classification accuracy using simple PCA method was 

slightly worse (3 to 5% less) than using PCA+MDS or t-

SNE. However, the computation time of PCA+MDS or t-

SNE was greater than that of the PCA method. In future 

investigations, it might be possible to use different types of 

deep neural network architectures that can yield more robust, 

reliable classification performance to decode movement-

related information from the neural signals, including 

movement initiation and therefore autonomous windowing 

for the above feature extraction. 

In conclusion, we tested and validated the classification to 

decode reward-related neural signals in M1 during both 

manual and observational tasks. This classification technique 

using hybrid PSD and SFC features should be useable as a 

neural critic to quickly adapt an RL-BMI to better decode 

the user's intended movements in all environments. 
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