A Novel Synthetic Simulation Platform for Validation of Breathing Rate Measurement | IEEE Conference Publication | IEEE Xplore

A Novel Synthetic Simulation Platform for Validation of Breathing Rate Measurement


Abstract:

Validation of biosensor algorithms is paramount for regulated medical devices applied to patient monitoring. We present validation of breathing rate (BR) measurement usin...Show More

Abstract:

Validation of biosensor algorithms is paramount for regulated medical devices applied to patient monitoring. We present validation of breathing rate (BR) measurement using a patch medical device via a novel synthetic simulation platform, in-hospital data collection and controlled laboratory study. Single-lead ECG and triaxial body acceleration signals with variability and noise are synthetically generated and quantized for a constellation according to the input parameters of heart rate (HR) as a fundamental frequency (fc) of ECG and reference BR as a modulating frequency (fr). Synthetic signals are input to the BR algorithms and the performance of output BRs are evaluated for a region-of-interest of the constellation (fc/fr ≥ 3 & fc/fr ≤ 8) accounting the Nyquist and physiological varability. The performances of patch sensor's BR are also evaluated in 13 post-operative patients with reference to a clinical bedside monitor and in 57 subjects carrying out a controlled laboratory protocol with reference to capnography. The synthetic simulations revealed mean absolute error (MAE) of 0.8±0.6 brpm and standard deviation of absolute error of 0.3±0.2 brpm for the BR algorithms of patch sensor. The controlled laboratory testing revealed MAE of 1.7±0.7 brpm (n=57) for stationary conditions. The proposed simulation platform can be useful for developmental refinement or validation of BR measurement prior to testing in humans at clinical or laboratory conditions and applicable for testing other patient monitoring devices with modular modifications.
Date of Conference: 18-21 July 2018
Date Added to IEEE Xplore: 28 October 2018
ISBN Information:

ISSN Information:

PubMed ID: 30440601
Conference Location: Honolulu, HI, USA

Contact IEEE to Subscribe

References

References is not available for this document.