
Heritability of nested hierarchical structural brain network

Moo K. Chung, Zhan Luo, Nagesh Adluru, Andrew L. Alexander, Richard J. Davidson, and 
H. Hill Goldsmith
University of Wisconsin, Madison, USA

Abstract

When a brain network is constructed by an existing parcellation method, the topological structure 

of the network changes depending on the scale of the parcellation. To avoid the scale dependency, 

we propose to construct a nested hierarchical structural brain network by subdividing the existing 

parcellation hierarchically. The method is applied in diffusion tensor imaging study of 111 twins 

in characterizing the topology of the brain network. The genetic contribution of the whole brain 

structural connectivity is determined and shown to be robustly present over different network 

scales.

I. Introduction

In many brain connectivity studies, the whole brain is often parcellated into p disjoint 3D 

volumes, where p is usually 116 or less [15], [16]. Anatomical Automatic Labeling (AAL) is 

probably the most often used parcellation scheme for this purpose [15]. AAL parcellation 

provides 116 labels for cortical and subcortical structures (Figure 1) [15]. Subsequently, 

either functional or structural information is overlaid on top of AAL and p × p connectivity 

matrices that measure the strength of connectivity between brain regions are obtained. The 

major shortcoming of using the existing parcellations including AAL is the lack of refined 

spatial resolution. Even if we detect connectivity differences in large parcellations, it is not 

possible to localize what parts of parcellations are affected without additional analysis, 

which reduces the localization power and sensitivity.

Brain networks are fundamentally multiscale. Intuitive and palatable biological hypothesis is 

that brain networks are organized into hierarchies [1]. A brain network at any particular 

scale might be subdivided into subnetworks, which can be further subdivided into smaller 

subnetworks in an iterative fashion. Unfortunately, many existing hierarchical parcellation 

schemes give raise to conflicting topological structures from one scale to the next. The 

topological structure of parcellation at one particular scale may not carry over to different 

scales [16], [1]. Thus, there is a need to develop a hierarchical parcellation scheme that 

provide a consistent network analysis results regardless of the choice of scale.

In this paper, we propose a new nested hierarchical network using the Courant nodal domain 
theorem [6]. The proposed method is related to graph cuts [14] and spectral clustering [7], 

[13] based parcellation schemes previously used in parcellating the resting-state functional 
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magnetic resonance imaging (fMRI). However, in all these studies, parcellations are not 

hierarchical or nested so they produce conflicting topology over different network scales. 

Unlike previous approaches, our proposed approach provides hierarchical nestedness and 

provide coherent topology across different spatial resolutions.

As an application, the proposed method was applied to diffusion weighted imaging (DWI) 

study of 111 twin pairs in determining the genetic contribution of topological properties of 

network topology.

II. Hierarchical structural brain network

A. Courant nodal domain theorem

For Laplacian Δ in a compact domain ℳ ⊂ ℝ3, consider eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤… 
and eigenfunctions satisfying Δψ j(p) = λ jψ j(p). We then have ψ0(p) = 1/ μ(ℳ), where μ(ℳ)

is the volume of ℳ. From the orthogonality of eigenfunctions, we have

∫
M

ψ0(p)ψ1(p)dμ(p) = 0,

Thus, ψ1 must be take positive and negative values. The Courant nodal domain theorem [6], 

[4] further states that ψ1 divides M into two disjoint regions by the nodal surface boundary 

ψ1(p) = 0. When the domain is discretized as a 3D graph, the second eigenfunction ψ1 is 

called the Fiedler vector. Applying the nodal domain theorem iteratively, we can 

hierarchically partition ℳ in a nested fashion.

B. Hierarchical parcellation

We first convert the binary volume of each parcellation in AAL into a 3D graph by taking 

each voxel as a node and connecting neighboring voxels. Using the 18-connected neighbor 

scheme, we connect two voxels only if they touch each other on their faces or edges. This 

yields an adjacency matrix and the 3D graph Laplacian. The computed Fiedler vector is then 

used to partition each 3D AAL parcellation volume into two disjoint regions (Figures 2). 

This process continuous literately in subdividing a region into two smaller regions 

hierarchically. Since the number of voxels are not uniform across AAL parcellations, we are 

approximately doubling the number of parcellations at each iteration. There are total of p = 

116 parcellations in layer 1 and 2·116 parcellations in layer 2. At layer 6, there are 3712 

parcellations, which results in 61voxels per parcellation in average.

C. Hierarchical connectivity matrix

At the each layer of the hierarchical parcellation, we counted the total number of white 

matter fiber tracts connecting parcellations as a measure of connectivity. The resulting 

connectivity matrices form a hierarchically nested convolutional network. Let S jk
i  denote the 

total number of tracts between parcellations R j
i  and Rk

i  at the i-th layer (Figure 3). The 
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connectivity S jk
i at the i-th layer is then the sum of connectivities at the (i + 1)-th layer 

(Figure 4), i.e.,

S jk
i = ∑

Rl
i + 1 ⊂ R j

i
∑

Rm
i + 1 ⊂ Rk

i
Slm

i + 1 .

The sum is taken over every subparcellation of R j
i  and Rk

i . This provide a subject-level 

connectivity matrix. The connectivity matrix Si = S jk
i  is expected to be very sparse at any 

scale (Figure 5). For 116 × 116 connectivity matrix, 60% of entries are zeros. As we 

increases the number of parcellations, the sparsity increases.

III. Application to twin imaging study

A. Subjects and image preprocessing

The method is applied to 111 twin pairs of diffusion weighted images (DWI) in determining 

the genetic contribution of structural brain networks. Participants were part of the Wisconsin 

Twin Project [9]. 58 monozygotic (MZ) and 53 same-sex dizygotic (DZ) twins were used in 

the analysis. Twins were scanned in a 3.0 Tesla GE Discovery MR750 scanner with a 32-

channel receive-only head coil. Diffusion tensor imaging (DTI) was performed using a 

three-shell diffusion-weighted, spin-echo, echo-planar imaging sequence. A total of 6 non-

DWI (b=0 s·mm2) and 63 DWI with non-collinear diffusion encoding directions were 

collected at b=500, 800, 2000 (9, 18, 36 directions). Other parameters were TR/TE = 

8575/76.6 ms; parallel imaging; flip angle = 90°; isotropic 2mm resolution (128×128 matrix 

with 256 mm field-of-view).

Image preprocessing follows the pipeline established in [3]. FSL were used to correct for 

eddy current related distortions, head motion and field inhomogeneity [10]. Estimation of 

the diffusion tensors at each voxel was performed using non-linear tensor estimation in 

CAMINO [11]. DTI-TK was used for constructing the study-specific template. Spatial 

normalization was performed for tensor-based white matter alignment using a non-

parametric diffeomorphic registration method [17]. Each subject’s tractography was 

constructed using TEND algorithm, and tracts were terminated at FA-value less than 0.2 and 

deflection angle greater than 60 degree [12].

B. Heritability index

We are interested in knowing the extent of the genetic influence on the structural brain 
network and determining its statistical significance over different network scales. From the 

individual connectivity matrix which counts the number of tracts, we computed pairwise 

twin correlations. For discrete tract counts, it is more reasonable to use Spearman’s 

correlation than Pearson’s correlation. Note Spearman’s correlation is Pearson’s correlation 

between the sorted tract counts. Pearson’s correlation does not work well with discrete tract 

counts that often do not necessarily scale at the constant rate across different subjects and 

parcellations.
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The twin correlations were used to compute the heritability index (HI) through Falconer’s 

formula, which determines the amount of variation due to genetic influence in a population 

[8], [5]: MZ-twins share 100% of genes while DZ-twins share 50% of genes. The additive 

genetic factor A and the common environmental factor C are related as

ρMZ = A + C, ρDZ = A/2 + C,

Thus, HI, as measured as A, is given by HI = 2(ρMZ − ρDZ), where ρMZ and ρDZ are the 

pairwise correlation between MZ-and same-sex DZ-twins (Figure 6).

C. Exact topological inference

We determined the statistical significance of MZ and DZ correlation network differences 

using the exact topological inference [5]. Let Gλ
MZ and Gλ

DZbe the binary networks obtained 

by thresholding ρMZ and ρDZ at correlation λ. Let B be a monotone graph function such that

B(Gλ1
MZ) ≤ B(Gλ2

MZ) and B(Gλ1
DZ) ≤ B(Gλ2

DZ)

for λ1 ≤ λ2 or λ1 ≥ λ2. The number of connected components (Betti-0) and the total node 

degree are such functions. The test statistic

Dq = sup
1 ≤ j ≤ q

B(G
 
λ j
MZ) − B(Gλ j

DZ)

is used to determine the statistical significance. The p-value under the null hypothesis of no 

network difference is then given by [5]

P Dq/ 2q ≥ d = 2 ∑
i = 1

∞
( − 1)i − 1e−2i2d2

.

D. Results

At each layer, we performed the exact topological inference. Figure 7 displays the change of 

the number of connected components (left), i.e., Betti-0 [5], and the total node degrees 

(right) over correlation values λ for MZ-(solid yellow) and DZ-twins (dotted red). The 

sudden topological changes are occurring at the almost same correlation values regardless of 

the scale of the network. This demonstrates the proposed hierarchical network is robust 

under scale change. The statistical significances are all less than 0.0002, 0.0002, 0.0002, 

0.0002, 0.0002 and 0.0099 from layer 1 to 6 showing very strong and consistent overall 

genetic contribution of topological changes in the structural brain networks.
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IV. Discussion

We have developed a new nested hierarchical structural brain network method. The method 

was used in determining the genetic contribution of anatomical connectivity. The 

significance of genetic contribution has been reliably shown in many structural twin brain 

network studies [5], [2]. The different level of genetic makeup between MZ- and DZ-twins 

provides the fundamental basis for phenotypic brain variations. Thus the estimation of 

heritability provides a viable way evaluate the validity of our new network approach.

The proposed framework provides the topologically consistent statistical results regardless 

of the scale of the parcellation. Counting the number of fibers down to very small subregions 

raises the question if we have a sufficient density of streamlines to achieve robustness of the 

result. The use of Spearman correlation and supremum in the test statistic makes our 

approach very robust even in low streamline density. Since p-values are all below 0.0002 in 

layers 1 to 5, up to layer 5 seems to be robust enough for the method. With the proposed 

hierarchical network, we get much larger number of regions across the hierarchical scales 

than the number of subjects, which raise the problem of the ratio of feature dimensionality 

versus sample size. However, as our results demonstrated, we are still achieving the robust 

results.

Hierarchical parcellations are often proposed to determine the optimal level of scales and to 

explore across-scale similarities and invariants [16], [1], [14], [7], [13]. Statistics on finer 

levels may provide information on robustness and variability of human brain connectivity at 

these levels. We believe up to networks scales up to layer 5 (3712 parcellations) provides 

such robustness. It is hoped the proposed parcellation and network construction frameworks 

will provide more consistent and robust network analysis across different studies and 

populations without concern for spatial resolution.

Acknowledgments

This work was supported by NIH research grants R01 EB022856, R01 MH101504, P30 HD003352, U54 
HD09025.

References

1. Betzel RF, Bassett DS. Multi-scale brain networks. Neuroimage. 2017; 160:73–83. [PubMed: 
27845257] 

2. Bohlken MM, Mandl RCW, Brouwer RM, van den Heuvel MP, Hedman AM, Kahn RS, Pol HEH. 
Heritability of structural brain network topology: a DTI study of 156 twins. Human brain mapping. 
2014; 35:5295–5305. [PubMed: 24845163] 

3. Chung MK, Hanson JL, Adluru L, Alexander AL, Davidson RJ, Pollak SD. Integrative structural 
brain network analysis in diffusion tensor imaging. Brain Connectivity. 2017; 7:331–346. [PubMed: 
28657774] 

4. Chung MK, Seo S, Adluru N, Vorperian HK. Hot spots conjecture and its application to modeling 
tubular structures. International Workshop on Machine Learning in Medical Imaging. 2011; 
7009:225–232.

5. Chung MK, Vilalta-Gil V, Lee H, Rathouz PJ, Lahey BB, Zald DH. Exact topological inference for 
paired brain networks via persistent homology. Information Processing in Medical Imaging (IPMI), 
Lecture Notes in Computer Science. 2017; 10265:299–310.

Chung et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Courant R, Hilbert D. Methods of Mathematical Physics Interscience. New York: 1953. English 
edition

7. Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. A whole brain fMRI atlas 
generated via spatially constrained spectral clustering. Human Brain Mapping. 2012; 33:1914–
1928. [PubMed: 21769991] 

8. Falconer D, Mackay T. Introduction to Quantitative Genetics. 4th. Longman; 1995. 

9. Goldsmith HH, Lemery-Chalfant K, Schmidt NL, Arneson CL, Schmidt CK. Longitudinal analyses 
of affect, temperament, and childhood psychopathology. Twin Research and Human Genetics. 2007; 
10:118–126. [PubMed: 17539371] 

10. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field 
variations. Magnetic Resonance in Medicine. 1995; 34:65–73. [PubMed: 7674900] 

11. Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins: How noise distorts diffusion-
weighted MR data. Magnetic Resonance in Medicine. 2004; 52:979–993. [PubMed: 15508154] 

12. Lazar M, Weinstein DM, Tsuruda JS, Hasan KM, Arfanakis K, Meyerand ME, Badie B, Rowley H, 
Haughton V, Field A, Witwer B, Alexander AL. White matter tractography using tensor deflection. 
Human Brain Mapping. 2003; 18:306–321. [PubMed: 12632468] 

13. Pepe A, Auzias G, De Guio F, Rousseau F, Germanaud D, Mangin JF, Girard N, Coulon O, 
Lefèvre J. Spectral clustering based parcellation of fetal brain MRI. IEEE International 
Symposium on Biomedical Imaging (ISBI). 2015:152–155.

14. Shen X, Papademetris X, Constable RT. Graph-theory based parcellation of functional subunits in 
the brain from resting-state fMRI data. Neuroimage. 2010; 50:1027–1035. [PubMed: 20060479] 

15. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, 
Joliot M. Automated anatomical labeling of activations in spm using a macroscopic anatomical 
parcellation of the MNI MRI single-subject brain. NeuroImage. 2002; 15:273–289. [PubMed: 
11771995] 

16. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET. Whole-brain 
anatomical networks: Does the choice of nodes matter? NeuroImage. 2010; 50:970–983. 
[PubMed: 20035887] 

17. Zhang H, Yushkevich PA, Alexander DC, Gee JC. Deformable registration of diffusion tensor MR 
images with explicit orientation optimization. Medical Image Analysis. 2006; 10:764–785. 
[PubMed: 16899392] 

Chung et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Left: AAL parcellation with 116 regions. Each parcellation is displayed as a disconnected 

3D volume. Red region is the left precentral gyrus. Middle: the second layer of the 

hierarchical parcellation with 2 × 116 regions. Each AAL parcellation is subdivided into two 

disjoint regions. Right: the third layer of the hierarchical parcellation with 4 × 116 regions.
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Fig. 2. 
Hierarchical parcellation of the left precentral gyrus shown in Figure 1 up to the 8-th layer. 

At the 8-th layer, we have 28−1 = 128 parcellations.
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Fig. 3. 

Two representative AAL parcellations R1
1 (right precentral gyrus) R2

1and (left precentral 

gyrus) at the first layer will be partitioned into four subregions R1
2, R2

2, R3
2, R4

2 at the second 

layer. The fiber tracts will be counted between the parcellations.
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Fig. 4. 
The hierarchical connectivity matrices of MZ-(top) and DZ-twins (bottom). The parts of 

connectivity matrices of the layers 1, 2 and 3 are shown. They form a layered convolutional 

network, where the convolution is defined as the sum of tracts between sub-parcellations.
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Fig. 5. 
Left: plot of sparsity over the number of pacellations. The sparsity is measures as the ratio of 

zero entries over all entries in the connectivity matrix. Right: plot of total degree of nodes 

over the number of pacellations. The vertical axis measures the ratio of the total number of 

connections over every possible connection. The plots all show the sparse nature of brain 

networks at any spatial scale.
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Fig. 6. 
Top, middle: Edge colors are Spearman’s rank correlations thresholded at 0.3 for MZ- and 

DZ-twins for different layers. Node colors are the maximum correlation of all the connecting 

edges. Bottom: Edge colors are the heritability index (HI). Node colors are the maximum HI 

of all the connecting edges. MZ-twins show higher correlations compared to DZ-twins. The 

node and edge sizes are proportionally scaled.
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Fig. 7. 
Betti-0 plots. The number of connected components (vertical) over the thresholded 

correlation values (horizontal) at each layer. The plots scale up over different layers 

resonably well. The sudden changes in the topological structure of network match up at the 

same correlation values.
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