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Optimizing energy harvesting for foot based wearable sensors

Christopher Beach, Student Member, IEEE, Peter R. Green, Member, IEEE,
and Alexander J. Casson, Senior Member, IEEE

Abstract— Wearable devices have the potential to improve
healthcare, but suffer from significant barriers to adoption,
including the need for constant recharging. Harvesting energy
from the ambient environment to top-up batteries can overcome
this, but the actual energy available is very small, and hence
it is critical that the whole system is highly optimized. This
paper presents an investigation into the optimization of inertial
energy harvesters for placement at the human foot. Lower body
locations have previously been shown to be very energy dense,
however previous energy harvester modeling has focused on the
lower leg rather than the foot itself for ease of device placement.
We show that the typical energy density can be almost double at
the foot compared with lower leg positions, with substantially
more energy concentrated in a smaller bandwidth. There is
thus a dual benefit of placing a harvester at the foot: there
is more energy due to the larger movement of the foot, and
more efficient (higher Q) harvesters can be used to increase the
collected energy. We place these results in context by analyzing
the power demands of a typical wearable, and identify that with
appropriate harvester tuning the peak current requirements of
the electronics can be fitted into the energy peaks generated
from each footstep.

I. INTRODUCTION

Wearable devices offer many promises to transform health-
care and improve the quality of life for people worldwide.
With the increasing accuracy of these devices they offer the
potential to provide out-of-the-clinic care where patients can
ultimately be monitored and treated in their own home, with-
out the need for intervention from a medical professional [1].
This can be advantageous in reducing costs for healthcare
providers, and keeping people out of hospital environments.
In spite of the promised benefits, recent wearable devices
are still limited in how user friendly they are [2], as well as
their social-acceptability [3]. This can limit their adoption,
especially amongst the elderly, who may be technically
illiterate and are the least likely to use a wearable device
[4]. A significant barrier to adoption remains the need to
charge devices on a near daily basis [5], [6]. With this
in mind, medical wearables should ideally be fully energy
autonomous through techniques such as energy harvesting
where energy is collected from the ambient environment to
extend battery life.

As a result, using energy harvesting to power wearables
has gained significant interest recently, with a comprehensive
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review given in [7]. In particular, large amounts of energy can
be harvested from the lower body. Examples of harvesting
done in the lower body include [8] which describes an energy
harvesting system that can extract energy from each time the
wearer’s foot strikes the floor by means of an air bladder
pumping air into a turbine with each footstep. [9] utilized a
piezoelectric element that flexes with each step, generating
on average 8.4 mW at a walking pace. Despite this potential,
current wearables are mainly located at the wrist due to the
ability to sense motion, heart rate, temperature, and sweat in
a socially-acceptable form factor as many people are used to
wearing a watch. Work is ongoing to allow the monitoring of
more bio-signals, such as heart rate [10] and gait [11], at the
foot and lower body locations where they can benefit from
the much larger potential for energy harvesting, in addition
to meeting the social-acceptability requirements as devices
can be hidden in a shoe.

In this paper we investigate the optimization of inertial
energy harvesters for placement at the human foot. We use
accelerometers placed on the body to estimate the energy
available at different locations. Similar modeling has been
done before, using the lower leg as a proxy for the foot,
assuming the two are the same. By placing accelerometers
on both the lower leg and the foot we show that this is not
the case. We show for the first time that substantially more
energy is available from the foot compared to the lower leg,
with a very different frequency content allowing the Q factor
of the energy harvester to be further optimized. In addition,
we compare the quasi-periodic energy generation that can
be obtained at the foot during each footfall to the typical
energy demands of a modern wearable, which is limited not
by average current draw, but by the peak current requirements
of a wireless radio. We show that with suitable optimization
the energy required for each packet transmission is within
the energy generated by each footfall, potentially allowing
a reduction in energy storage requirements. Finally, we
have made the modeling in this paper freely available as a
MATLAB GUI to help others design more optimized shoe
based energy harvesters. The remainder of this paper is
organized as follows. In Section II we present the methods
used to model the harvester and collect sample input data.
Section III presents the results from the harvester model,
comparing the foot and lower leg sites as well as the energy
requirements of a typical Bluetooth Low Energy wireless
radio. Finally conclusions are drawn in Section IV.



Fig. 1. Screenshot of the energy harvester GUI.

II. METHODS

A. Harvester model

Our MATLAB GUI tool for modeling an intertial energy
harvester and storage device is shown in Fig. 1. It allows the
user to load a dataset of accelerometer data and to modify
the harvester parameters to identify the power waveforms
from this harvester. We have made this GUI and dataset
available as a free download (https://github.com/
CASSON-LAB) to help designers specify the energy budgets
of their wearable devices.

To identify the typical amount of energy available from
human movements, a model of an inertial energy harvester
was created, based upon a design from [12] which assumes
that the energy harvester is a damped-mass-spring system.
To ensure that we do not overestimate the amount of energy
available, we only look at the energy in one axis, the one with
the largest magnitude. Other models take the magnitude of
all three axes, which gives larger output values. Additionally,
calculating the magnitude is a non-linear operation that will
affect the frequency content of the data.

The movement of the proof mass in the harvester is found
by using the approximation given in [12], which describes
a second order band pass filter with a quality factor Q and
resonant frequency fr. This is shown in (1), which gives
the displacement over time, z(t), of the moving mass, where

Q =
√
km
b , fr =

√
k/m

2π , a is the measured acceleration, b
the harvester damping factor, m is the proof mass, and k is
the spring constant. This is consistent with the modeling and
notation in [12]. To optimize the harvester performance, the
resonant frequency can be tuned to match the fundamental
frequency of the input data, which can automatically be done
in the GUI. Finally, the movement of the proof-mass can be
converted into a power waveform using (2). An efficiency
factor can also be factored in to account for any losses in
the transduction method and the connected power electronics.
However in this work we assume these efficiencies to be
100%.

z(t) = L−1
{

a(s)

s2 + (2πfr/Q)s+ (2πfr)2

}
(1)

P (t) = b

(
dz(t)

dt

)2

(2)

The power available from an energy harvester is not the
constant voltage or current which is required by the attached
electronic circuitry. Instead the power output consists of nar-
row, large amplitude peaks that correspond to each footstep
of the wearer. For this reason, harvesters are paired with
storage elements, typically supercapacitors, which ensure
a constant voltage can still be supplied to the electronic
circuitry. Supercapacitors suffer from self-discharge, and it
can not be guaranteed that the necessary energy will be
available when it is required.

B. Analysis methods

To estimate the amount of energy that can be collected
from the foot compared to the lower leg, we have collected
five records from a subject walking on a treadmill at three
speeds: 1.0, 3.5 and 6.5 km/h, which are referred to as slow
walk, normal walk and light jog respectively. Acceleration
data was collected using Axivity AX3 sensors, which were
attached to two sites on the subject, the lower leg and the
foot. Both sensors were orientated in the same direction with
the x-axis horizontal (pointing forward), the y-axis vertical
(pointing down) and the z-axis horizontal (pointing away
from the leg). The sensor was set to log data at 100 Hz
for a total of 6 minutes, allowing 2 minutes for each speed.
Prior to data analysis the data was upsampled to 128 Hz
and filtered with a 3rd order low pass filter with a cut-off of
0.1 Hz to remove the gravity component in the acceleration.
Experimental procedures were approved by the University
Research Ethics Committee at the University of Manchester.

To place the results in context we also analyze the power
draw of typical electronic parts that make up a wearable.
These constituent parts are: a sensing element (e.g. an ac-
celerometer); signal conditioning (eg. amplifiers and filters);
a micro-controller; and a wireless radio, (eg. a Bluetooth Low
Energy (BLE) device). The first two of these devices can
be characterized as having a quiescent current draw which
is relatively constant. The micro-controller and radio have
much more peaky power draws, as they spend most of their
time in sleep mode, only waking intermittently to collect or
transmit data. The device with the largest ratio between on
and sleep modes is the wireless radio [13]. As the wireless
radio typically dominates the power draw, we only compare
the power draw of this device against the power available
from the harvester. We measure the current draw of a Nordic
nRF52 BLE radio [14] which requires 20 mW of power
for 0.3 ms for a receive or transmit operation of a 27 byte
payload. Potentially, if the BLE radio did not have to run
on demand, this peak current draw could be fitted into the
peaks of energy available from the energy harvester with
each footfall. The dimensions of these harvester peaks are
well defined and relatively predictable when harvesting at
the foot, and doing this would allow the losses of the storage
element to be overcome, with the energy being utilized as
soon as it is available.
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Fig. 2. Example data from the foot (top) and lower leg (bottom) showing input acceleration data, proof mass displacement, and output power during a
normal walk at 3.5 km/h. Annotations in (c) indicate the duration and average power in each peak.

TABLE I
MEAN FIGURES FROM THE 5 RECORDS WITH THE ENERGY HARVESTER IN FOOT AND LOWER LEG LOCATIONS, USING THE HARVESTER PARAMETERS

LISTED IN SECTION III-A. HARVESTER PARAMETERS (PARTICULARLY Q FACTOR) ARE THE SAME FOR ALL CASES.

Location Activity Avg. power
(µW)

Avg. power
in peak (mW)

Duration of
avg. peak

(ms)

Energy in
avg. peak

(µJ)

Fundamental
magnitude

(W/
√

(Hz))

Fundamental
frequency

(Hz)

Percentage of
power in

fundamental

Slow walk 048 ± 16.6 00095 322 031 0.105 0.515 3.46
Foot Normal walk 899 ± 25.1 12620 039 497 0.473 0.925 4.01

Light jog 207 ± 3.90 00536 174 093 0.920 1.329 5.51

Slow walk 071 ± 30.58 00209 308 065 0.123 0.515 3.28
Lower leg Normal walk 541 ± 23.16 05537 057 315 0.279 0.925 2.24

Light jog 096 ± 3.93 00120 316 038 0.538 1.329 3.27

III. RESULTS

A. Harvester energy

The harvester model allows modification and exploration
of the harvester parameters. The results in this section show
one example case, with the parameters set to m = 20 g,
k = 0.67557 kg

s2 , b = 0.0055 kg
s and Zl = 50 mm to match

typical values from the literature. These give the harvester
a Q factor of 21.1 and a resonant frequency of 0.925 Hz.
Here we analyze the x-axis of acceleration. A sample of the
output from the harvester model is shown in Fig. 2, with
normal walk data. The quasi-periodic nature of the energy
generation is seen, together with the substantially higher
power generation from the foot compared to the lower leg.

Each of the five records were processed and the mean of
these results are given in Table I. In the normal walk and light
jog cases there is more energy available at the foot than the
lower leg, as much as 1.6 times as much in the normal walk
case. Additionally, the peak power in both of these cases is
higher at the foot than the lower leg, almost 2.3 times as
much in the normal walk case. The duration of each peak is
shorter in both cases, although the total energy harvested is
still higher at the foot location. In the slow walk case this
scenario is reversed. The average power of the waveform is
1.5 times lower on the foot than the lower leg in the slow
walk case, and both the average power and duration of a
peak is lower at the foot site.

The data presented in the last three columns of Table I
summarizes the frequency content in each of the cases. While

the fundamental frequency experienced at the foot and lower
leg is the same, the magnitude of this, and the amount of
power in the fundamental, differs substantially between the
foot and lower leg. At the foot site, there is always a larger
amount power in the fundamental compared with the lower
leg. This helps suggest why there is more power available at
the foot than at the lower leg in the normal walk and light
jog cases. In contrast, in the slow walk case the fundamental
has a larger magnitude at the lower leg than the foot.

An example Fourier transform of accelerometer data from
one record is is shown in Fig. 3. From Fig. 3 the distribution
of energy amongst the harmonics for each site and speed can
be seen. Of note is that at the foot the majority of the energy
is spread between the first four, three and two harmonics
in each of the slow walk, normal walk and light jog cases
respectively. In contrast, at the lower leg site, the energy is
much more widely spread across the spectrum. This allows
further optimization of foot based harvesters, as not only
is there more energy available at the foot in most scenarios,
but the energy is more concentrated in lower harmonics. This
means harvester designers can use higher Q factors when at
the foot, as more energy is available in a narrower bandwidth.
This suggests that even more energy than suggested in Table I
could be harvested, as in this case both harvesters had the
same Q factors. From our new data it is clear that using the
lower leg as a proxy site for the foot is not accurate, unlike
previously suggested in some literature.
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Fig. 3. Fourier transform of the input acceleration data for one record with
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Fig. 4. Power profile of a BLE packet and a footstep, with the harvester
placed on the lower leg and on the foot. Note that foot power profile lasts
for around 40 ms, while the lower leg profile continues off scale.

B. Fitting with wearable energy requirements
In order to identify whether the demanding power draw

of a wireless radio can fit within the power profile generated
from each footstep, the profile of sending of full (27 byte)
BLE packet on the nRF52 is shown overlaid against an
average power profile generated from a footstep in Fig. 4.
This is given using the same harvester parameters as in
Section III-A. With these harvester parameters, while the
overall energy is sufficient, the peak requirements to are
too large to fit into the power profile of a footstep. With
further Q tuning, suggested by the results in Fig. 3, the peak
power could be increased to allow this. While the widths of
the peaks generated are narrower at the foot, it is the peak
value, not the duration that creates a limiting factor. We see
this as the key next step for foot energy harvesters, it is
not about just increasing the average power, but generating
energy peaks that are capable of accommodating the high
peak currents. Exploiting this would allow a reduction in the
size of the energy storage element, reducing size and weight.
This will also reduce the losses experienced from the storage

element as the energy can be used soon after it is generated.

IV. CONCLUSIONS

We have investigated the optimization of energy harvesting
for wearable sensors and shown that over twice the amount of
energy is available for harvesting at the foot compared to the
leg. Further, the acceleration at the foot is concentrated in a
narrower bandwidth, which means that more efficient, higher
Q factor harvesters can be used at this site, further increasing
the amount of power available. This potentially allows the
peak power draw from a wearable, due to a BLE radio, to be
fitted into the peak of energy harvested from each footstep,
helping reduce energy storage losses. Implementing this in
practice is challenging, and in future work we will discuss
aligning wireless transmissions with when these peaks arrive
to reduce self-discharge.
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