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Abstract

Mild traumatic brain injury (mTBI) is a growing public health problem with an estimated 

incidence of one million people annually in US. Neurocognitive tests have been used to both 

assess the patient condition and to monitor the patient progress. This work aims to directly use 

diffusion MR images taken shortly after injury to detect whether a patient suffers from mTBI, by 

incorporating deep learning techniques. To overcome the challenge due to limited training data, we 

describe each brain region using the bag of word representation, which specifies the distribution of 

representative patch patterns. We apply a convolutional auto-encoder to learn the patch-level 

features, from overlapping image patches extracted from the MR images. to learn features from 

diffusion MR images of brain using an unsupervised approach. Our experimental results show that 

the bag of word representation using patch level features learnt by the auto encoder provides 

similar performance as that using the raw patch patterns, both significantly outperform earlier 

work relying on the mean values of MR metrics in selected brain regions.

I. Introduction

Mild traumatic brain injury (mTBI) is a growing public health problem, which can cause 

loss of consciousness, headache, difficulty thinking, memory problems, attention deficits, 

mood swings and frustration. Recent work using MRI revealed that there are areas of subtle 

brain injury after mTBI; however, no single imaging metric has been shown to be sufficient 

as an independent biomarker [1]-[3].

While diffusion MRI has been extremely promising in the study of mTBI, identifying 

patients with recent mTBI remains a challenge. The gray matter such as the thalamus and 

white matter including the corpus callosum and frontal deep white matter have been 

repeatedly implicated as areas at high risk for injury in the literature. There have been some 

previous studies using machine learning techniques for mTBI identification from MR 

images [4]-[7], however the features used in those works are mainly hand-crafted features 

and may not be the most discriminative feature for this task.

In this work, we develop a machine learning framework to classify mTBI patients and 

controls using features extracted from diffusion MRI in the thalamus and corpus callosum. 
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The main challenge is that we only have limited samples (only 114), and each sample has a 

very high dimensional raw representation (multiple 3D MR volumes). Therefore, it is not 

possible to directly train a classification network using the raw MRI volume data as the 

input. We have proposed a new approach for feature extraction from MR images, where we 

first learn the feature representation of patches using a deep unsupervised learning approach 

[8], and then aggregate the features from different patches through a bag of word 

representation, and use them along with demographic and neuro-cognitive test features as 

the overall feature vector. We then use feature selection followed by a classification 

algorithm to identify mTBI patients. The block diagram of the overall algorithm is shown in 

Fig. 1. Through experimental study, we show that by learning patch level deep features and 

aggregating them through a bag of word representation for each brain region, we get much 

higher accuracy compared to using mean values of the various MR metrics in each region.

The rest of the paper is organized as follows. Section II provides the description of the 

proposed framework. Section III provides the experimental studies and comparison to other 

works. And finally the paper is concluded in Section IV.

II. The Proposed Framework

There have been some previous studies on mTBI classification using different sets of 

features, from demographic (such as age and gender) and neurocognitive to hand-crafted 

features from medical images. In this work we propose a framework for mTBI identification 

based on imaging, demographic, and neuro-cognitive features. We derive the imaging 

features from the specialized MR imaging protocols and related image metrics that are 

developed and shown to be promising for distinguishing mTBI patients from controls [1]-

[3]. These metrics are summarized in Table I.

Because of the limitation of the number of samples, it is not possible to train a deep 

convolutional network to directly classify the brain images. To tackle this problem, and also 

based on the intuition that mTBI would only impact some local regions in the brain, we 

propose to represent each brain region by a bag of words (BoW) representation, which is the 

histogram of different clustered patch patterns among all patches in the region.

A main challenge in using such a representation is how to describe each local patch. Because 

mTBI does not necessarily impact all patches, we cannot infer the patch-level labels from 

subject-level labels. Therefore we cannot learn patch-level features through supervised 

learning. To overcome this problem, we apply an unsupervised learning approach at the 

patch level, and train an auto-encoder to learn features that can be used to reconstruct 

patches. In the following, we first explain how do we learn patch level features through 

training an auto-encoder, and then describe how do we aggregate the patch-level features 

using a bag of words representation for each region, and finally how to combine the region 

representations and other information for patient-level classification.

A. Patch Feature Learning Using an Auto-Encoder

In order to learn patch-level features without having labels, we use a convolutional auto-

encoder [10]-[11], which is an unsupervised feature learning approach. Convolutional auto-
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encoder gets an image patch as the input and performs multiple convolution plus 

downsampling layers to encode the image into some latent representation, and then uses 

these features to reconstruct the original patch through deconvolution. By doing so, the 

network is forced to learn some representative information that is sufficient to recover the 

image. The overall architecture of a convolutional auto-encoder is shown in Figure 2. Here, 

each layer of the network performs three operations: convolution, nonlinear transformation, 

and pooling (downsampling). After training this model, the latent representation in the mid-

layer is used as patch feature representation.

In our study we consider two scenarios when training the convolutional auto-encoder. In one 

scenario, we train one model for each metric (such as FA, MK, RK, etc.). In the other 

scenario, we concatenate all metrics together (treat them as different channels) to form a 3D 

patch and train one convolutional auto-encoder. We use the same model for all regions 

(Thalamus and CC).

B. Bag of Visual Words

Once the features are extracted from each patch, we use the bag of words (BoW) 

representation [9] to describe each brain region, which calculates the histogram of 

representative patterns (or visual words) over all patches in this region. To find the visual 

words, we apply the K-means clustering algorithm to the patch features obtained for all 

training patches. Given the MR images of a subject, we extract overlapping patches from 

each of two brain regions (Thalamas and CC) Each patch is quantized to its closest visual 

words, and each metric in each region is described by a histogram of different visual words 

among all patches in this region. In the case where we trained a single auto-encoder to 

generate a single feature representation for all metrics together, each region is represented by 

a single histogram. The block diagram of the BoW approach is shown in Figure 3.

C. Feature Selection and Classification

After deriving deep-bag-of-words features from diffusion MR images, we will get two 

feature vectors, one for Thalamus region and the other for Corpus Callosum. We concatenate 

the features from both regions, with demographic and neuro-cognitive test features, to form 

the final feature vector. We then perform feature selection [12]-[13] to minimize the risk of 

over-fitting before classification. We tried multiple feature selection approaches such as 

max-relevance and min-redundancy (MRMR) [14], maximum correlation, greedy forward 

selection, and it turns out that the greedy forward feature selection works best for our 

problem. This approach selects the best features one at a time with a given classifier, through 

a cross-validation approach. For classification, we tried different classifiers (such as SVM, 

neural network, and random forest) and SVM was chosen because it generally gave better 

performance.

III. Experimental Results

We evaluate the performance of the proposed approach on our dataset of 114 subjects. This 

dataset contains 69 mTBI subjects between 18 and 64 years old, within 1 month of mTBI as 
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defined by the American College of Rehabilitation Medicine (ACRM) criteria for head 

injury and 40 healthy age and sex-matched controls.

To evaluate the model performance, we use a cross validation approach, where each time we 

randomly take 20% of the samples for validation, and the rest for training. We repeat this 

procedure 50 times (to decrease sampling bias), and report the average validation error as the 

model performance.

For the convolutional auto-encoder, we learn features on patches of 16×16 pixels in each 

image slice. The encoder and decoder each have 4 layers, and the kernel size is always set to 

(3,3). The latent feature dimension is 32 for the networks which are trained on each metric, 

and 64 for the network which is trained on the stack of all metrics. To train the model, the 

batch size is set to 500, and the model is trained for 10 epochs. The learning rate for the 

stochastic gradient descent is set to 0.0003. The learnt auto-encoder is used to generate 

latent features on each overlapping patch in the training images. The resulting features are 

further clustered to N words using K-means clustering. N was varied among 20, 30, and 40. 

Each MR metric in each region is represented by a histogram of N dimension For SVM, we 

use radial basis function (RBF) kernel. The hyper-parameters of SVM model (kernel width 

gamma, and the mis-classification penalty weight, C) are tuned based on the validation set.

In the first experiment, we compare the proposed approach with some previous works. For 

the proposed approach, the initial image feature representation is 260 dimensional, with 20 

words for each of 8 MR metrics (AWF, DA, De par, FA, MD, AK, MK, RK) in Corpus 

Callosum, and 5 MR metrics in Thalamus (FA, MD, AK, MK, RK). Together with 

additional 2 demographic and clinical features, the total feature dimension is 266. We 

compare our approach with previous works that only used mean values of each MR metric in 

each region [6], and also the work in [4], as well as BoW approach on raw patches [6] (that 

is, we find the visual words by applying the K-means clustering algorithm on the raw image 

patches directly). It is worth to mention that the work in [4] was using a different dataset, 

and set of metrics.

With forward feature selection using the SVM classifier, the optimal feature subset contains 

10 features FA in Thal, DA in CC, AWF in CC, AWF in CC, AWF in CC, FA in CC, RK in 

Thal, MK in Thal, RK in CC, FA in Thal. The comparison with previous works is provided 

in Table II. As we can see, Deep-BoW approach achieves reasonable improvement over 

previously used features, except for BoW on raw patches where it performs slightly worse 

than using the raw pixel values. We believe the performance of Deep-BoW could be further 

improved by better tuning the deep network hyper-parameters.

We have also evaluated the classification performance for feature subset of different size. 

Besides classification accuracy, we also report the sensitivity and specificity, which are 

important in the study of medical data analysis. The sensitivity and specificity are defined as 

in Eq. (1), where TP, FP, TN, and FN denote true positive, false positive, true negative, and 

false negative respectively. In our evaluation, we treat the mTBI subjects as positive.
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Sensitivity = TP
TP+FN,   Specificity = TN

TN+FP (1)

Figure 4 denotes the classification accuracies, sensitivities and specificities achieved by 

optimum subset of feature of dimension 1 to 10.

In Table III, we provide the comparison between the two scenarios, where in one of them 

one network is trained per metrics, and in the other one a single network is trained over the 

stack of multiple metrics (for different number of words).

To have a better generalization accuracy analysis, we also provide the comparison in terms 

of the accuracy on a heldout set. In each run, we randomly pick 20 samples as the heldout 

set. We then run cross validations 50 times within the remaining data, to generate 50 models, 

and use the ensemble of 50 models to make prediction on the held-out set and calculate the 

classification accuracy. We repeat this 6 times, each time with a different set of 20 heldout 

samples chosen randomly and report the average accuracy. For this evaluation, we only 

compare two BoW based approaches, one derived by applying K-means on the raw patch 

images, and another by applying K-means on the patch level deep features. The average 

accuracy for the heldout sets for these two approaches are given in Table III. It is interesting 

that, although BoW using deep patch level features had lower cross validation accuracy in 

Table I, it had slightly higher heldout set accuracy. For BoW on raw patches, the selected 

subset of features includes: Age, MK in Thal, RK in Thal, Depar in CC, AWF in CC, Depar 

in CC, Depar in CC, RK in Thal, MK in Thal, FA in CC. For BoW using the deep features, 

the selected features include: FA in Thal, DA in CC, AWF in CC, AWF in CC, AWF in CC, 

FA in CC, RK in Thal, MK in Thal, RK in CC, FA in Thal. This comparison is provided on 

Table IV.

Finally, we present the the average histogram representation of patients, and compare it with 

the average histogram representation of control subjects. These histograms and their 

difference are shown in Fig. 5. As we can see mTBI and control subjects have clear 

differences in some part of these representations.

IV. Conclusion

In this work, we propose a machine learning framework for mTBI identification from 

diffusion MR images. First, deep unsupervised learning approach is used to learn feature 

representation for image patches, and then patch level features are aggregated in the form of 

the bag of word representation to form the overall image feature. These features are used 

along with demographic and neuro-cognitive features for patient identification. Then greedy 

forward feature selection and support vector machine are used to perform classification. 

Through experimental studies, we show that by learning deep visual features, we obtain 

significant gain over using mean values of various MR metrics in each brain region.
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Fig. 1. 
The block-diagram of the proposed mTBI identification algorithm
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Fig. 2. 
The block-diagram of the proposed convolutional auto-encoder
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Fig. 3. 
The block-diagram of the proposed BoW approach
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Fig. 4. 
The model performance for feature set of different size
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Fig. 5. 
Deep-BoW histograms of patients and controls
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TABLE I

MRI metrics description

MRI Metric Metric Description

AWF Axonal Water Fraction

DA Diffusivity within Axons

De-par Diffusion parallel to the axonal tracts in the extra-axonal

De-perp Diffusion perpendicular to the axonal tracts in the extra-axonal

FA Fractional Anisotropy

MD Mean Diffusion

AK, MK, RK Axial Kurtosis, Mean Kurtosis, Radial Kurtosis
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TABLE II

Performance comparison of different approaches

The Algorithm Classification Accuracy
on Validation Set

Single best feature [6] 72%

The selected subset with 8 features [6] 80%

The algorithm in [4] using selected features with MRMR, and Baysian Network 82%

BoW on raw patches and 10 metrics [7] 85.5%

The algorithm in [4] using selected features with MRMR, and Neural Network 86%

BoW on raw patches with 20D histograms [6] 92%

The proposed Deep-BoW with 20D histograms 87.8%

The proposed Deep-BoW with 30D histograms 90.1%
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TABLE III

Performance comparison for different approaches

Auto-Encoder
Scenario

Bow-Hist
Dimension Image Feature Dimension

Cross-
Validation
Accuracy

Multiple Network 20 260 87.8%

Multiple Network 30 390 90.1%

Single Network 130 260 89.4%

Single Network 190 380 90%

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 August 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Minaee et al. Page 15

TABLE IV

Performance comparison of different approaches

The Algorithm Heldout Set Accuracy

BoW on raw patches [6] using 20 words for each metric and region 86.2%

The proposed Deep-BoW 86.4%
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