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Abstract— Recent studies indicate the limited clinical accep-
tance of myoelectric prostheses, as upper extremity amputees
need improved functionality and more intuitive, effective, and
coordinated control of their artificial limbs. Rather than ex-
clusively classifying the electromyogram (EMG) signals, it has
been shown that inertial measurements (IMs) can form an
excellent complementary signal to the EMG signals to improve
the prosthetic control robustness. We present an investigation
into the possibility of replacing, rather than complementing, the
EMG signals with IMs. We hypothesize that the enhancements
achieved by the combined use of the EMG and IM signals
may not be significantly different from that achieved by the
use of Magnetometer (MAG) or Accelerometer (ACC) signals
only, when the temporal and spatial information aspects are
considered. A large dataset comprising recordings with 20 able-
bodied and two amputee participants, executing 40 movements,
was collected. A systematic performance comparison across a
number of feature extraction methods was carried out to test
our hypothesis. Results suggest that, individually, each of the
ACC and MMG signals can form an excellent and potentially
independent source of control signal for upper-limb prostheses,
with an average classification accuracy of ≈ 93% across all
subjects. This study suggests the feasibility of moving from
surface EMG to IM signals as a main source for upper-limb
prosthetic control in real-life applications.

I. INTRODUCTION

Traditional myoelectric control utilizes the surface elec-
tromyogram (EMG) signals from the stump remnant muscles
to extract the prosthesis control information [1]. In academic
research, EMG pattern recognition has been very successful
in decoding grip type, wrist and individual and combined
fingers movements [2]–[4]. Despite the potential offered by
myoelectric hands, prosthesis users report these devices to
be challenging to control and limited in function [5], [6].
This limitation has been mainly attributed to the lack of
classification robustness and a simultaneous requirement for
a large number of EMG electrodes [7]. Hence, many research
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groups have moved towards multi-modal control solutions by
considering inertial measurements (IMs) as a complementary
source signal to EMG [7], [8].

Scheme et al. [9] and Fougner et al. [10] were among the
first to consider the combination of EMG time-domain (TD)
features with the average value of accelerometer (ACC) read-
ings for prosthesis control. Boschmann et al. [11] demon-
strated that a classifier trained with features from EMG,
ACC, and gyroscope (GYRO) outperforms classifiers trained
using only EMG or EMG+ACC data when classifying tran-
sient EMG data. Simple TD features combined with Auto-
Regressive (AR) model parameters (a combination referred
to as TDAR) were extracted from the EMG signals, while
the mean average value plus wavelength were considered
for ACC feature extraction and mean average value plus
root mean square were considered for GYRO. Geng et al.
[12] considered the combination of the EMG and ACC-
mechanomyography signals and performed their analysis
on amputees and intact-limbed subjects. Similar to previ-
ous studies, simple TD features were considered for ACC-
mechanomyography signals: mean absolute value, variance,
and maximum value. The combination of EMG+ACC was
also considered by Radmand et al. [13] using TD features for
the EMG data and the mean value of the ACC data. Krasoulis
et al. [7] considered the mean value of the combination
of ACC, GYRO, and Magnetomyogram (MAG) signals in
concatenation with the TD features from the EMG signals
to show significant enhancements in classification accuracies
in a problem with 40 classes of movements. Khushaba et al.
[14] as well used the mean value of ACC signals and showed
reduction in classification error.

The literature has always considered other sensing modali-
ties such as ACC, GYRO, and MAG as supporting signals to
the EMG and not as competing source of information. This
could be due to the fact that previous studies were focused
on extracting IM features that capture the temporal content,
without further investigation into the spatial content that may
reveal how different channels interact. Our hypothesis in
this study is that movement classification can be enhanced
if spatio-temporal information of IMs is considered. This
hypothesis is motivated by recent studies which show sig-
nificant performance improvement when both temporal and
spatial information are extracted from EMG [15], [16].

II. METHODS
A. Graph Laplacian-based Feature Extraction

A graph is a structure involving a set of objects with
each pair of objects being in some sense related [17]. Given



a graph G = (V, E) with m vertices, each vertex in V
represents a channel (ACC or MAG), and E is a set of
edges connecting spatially distributed channels. Let A be
a symmetric m × m adjacency matrix with its entries Aij

having the weight of the edge joining channel i and channel
j. Under these definitions, the Laplacian matrix Lm×m of
a graph G with m vertices is defined as L = D − A
where D = diag(sum(A)) is a diagonal matrix having
the degrees along its diagonal, i.e., it contains information
about the number of edges attached to each vertex [17]. The
smaller the value of the diagonal entries of D, denoted as Dii

(corresponding to channel i), the more “similar” is channel
i to the remaining channels.

When the graph Laplacian under investigation describes
hand movement data with electrodes distributed on the fore-
arm, it is not only the temporal information of the IM signals
from each channel that influences the structure of the graph,
but also the spatial relationships between the information
from different channels. To handle both temporal and spatial
information, the weights of the adjacency matrix connecting
every pair of nodes i and j are represented by the channels’
temporal information xfi and xfj and their spatial location xpi
and xpj . A modified adjacency matrix encoding the spatial
similarity is then utilized [18]:

Aij =

‖
xf
i −xfj ‖2
σ2
f

+ α
‖xp

i −xp
j‖2

σ2
p

if i 6= j

0 otherwise
, (1)

where α is a weight factor to balance the importance of the
spatial component, and σ is a normalization factor selected as
the maximum value from the corresponding vectors. On the
other hand, the indices of the different channels are used for
the spatial location component. The (symmetric) normalized
Laplacian is then formed as Lsym := D−1/2LD−1/2 = I −
D−1/2AD−1/2. Since the degree matrix D is diagonal and
positive, its reciprocal square root D−1/2D−1/2 is just the
diagonal matrix whose diagonal entries are the reciprocals
of the positive square roots of the diagonal entries of D.
Equivalently, the normalized Laplacian can be written as

Lsym
ij =

{
1 if i=j and Dii 6= 0

− Aij√
DiiDjj

otherwise . (2)

The first set of features utilized in this paper is the upper
(or lower, since L is a symmetric matrix) triangular portion
of the Laplacian matrix L, that is, − Aij√

DiiDjj

given j > i (or

similarly i > j). This feature translates to the integral value
of the normalized Euclidean distance between the windowed
IM data from every two channels. Our extracted features not
only include the temporal information but also the spatial
information about the interaction between the data from the
different channels. On the other hand, since Dii is the sum
of the similarities of xi to its nearest neighbors in the n-
dimensional space, the smaller the Dii value of a point xi,
the more likely it is to be near the center of the cluster
containing it. This leads us to take advantage of the fact

Fig. 1. Sensor placement. Eight EMG-IM sensors were equally spaced
around the participants forearm, two targeted the EDC and FDS muscles,
and two were placed on the biceps and triceps muscles. Elastic bandage
was used to keep sensor positions fixed. Sensor placement shown for an
able-bodied (left) and an amputee subject (center, right).

that the points xi’s that are near their cluster centers should
contribute more in variance calculation compared to the xi’s
which are outliers or noise. Hence, to capture the variance
information we have included in our extracted features the
weighted variance of the graph Laplacian; previously defined
as

∑
k x

2
ikDii based on the spectral graph theory [16]. In this

setting, k is the time sample index with k = 1, 2, 3, · · · , N ,
and N is the temporal window size.

B. Data Collection

Twenty intact-limbed subjects and two transradial am-
putees took part in the experiment as described in [7]. Briefly,
data were collected by using a Delsys TrignoTM IM Wire-
less System. Each electrode incorporated one EMG sensor
and one 9-degree-of-freedom (DOF) IM unit. The IM unit
comprised a tri-axial accelerometer, gyroscope, and magne-
tometer. Therefore, ten raw signals were associated with each
EMG-IM sensor. The sampling frequency was set to 2 kHz
for EMG and 128 Hz for IM data. No IM calibration was
performed since IM recordings were used in their raw format.
Eight sensors were equally spaced around the forearm and
were placed 3 cm below the elbow. Two sensors targeted the
extrinsic hand muscles: extensor digitorum communis (EDC)
and flexor digitorum superficialis (FDS), and the remaining
two were placed on the biceps and triceps brachii muscles.
Figure 11 shows the electrode placement for one able-bodied
subject and one amputee. Upon skin cleansing and electrode
placement, participants reproduced a series of 40 motions,
including various individuated-finger, hand, wrist, grasping
and functional movements. Each movement was repeated six
times and trials were interleaved with 5 s resting periods.
The two amputee volunteers performed bilateral mirrored
movements. Further details can be found in [7].

C. Signal preprocessing and classifier training

A sliding window approach was utilized to extract features
from all of the EMG, ACC, and MAG signals, with a window
size of 150 ms shifted by 50 ms. The EMG and IM signals
were synchronized with linear interpolation. The number of
raw signals (denoted as Nsignals) associated with each
MAG and ACC sensors was 3 signals / sensor. We used the
proposed feature extraction based on the upper triangular
portion of adjacency matrix to end up with (Nsignals×

1Figure 1 was originally published in [7] and is licensed
under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).



(Nsignals - 1) / 2) features with an additional Nsignals
features extracted from the graph variance as indicated in the
previous section. Since the dimensionality of the extracted
feature set was large, we used the Spectral Regression (SR)
dimensionality reduction method [19] to project the total
number of features into c−1 features, where c is the number
of classes. For movement intent decoding from the EMG
and IM data, we used a linear discriminant analysis (LDA)
classifier.

A leave-one-trial out scheme was utilized to test the
proposed IM features, in which we left one complete trial
from each movement for extracting the testing feature set
while the remaining five trials were used to extract the
training feature set. We then averaged the results across all
six repetitions. To compare the performance of the proposed
graph Laplacian-based feature extraction method, denoted
here as GL method, we also included a number of feature
extraction methods from the literature, including: the root
mean square (RMS), combination of mean absolute value
(MAV) and waveform length (WL), the empirical cumulative
distribution (ECDF) feature proposed specifically for the
ACC data in [20], wavelet features (Symmlet family of
wavelets with 5 levels of decomposition), and Hjorth and
Barlow features from the BioSig toolbox2.

III. EXPERIMENTAL RESULTS

The average classification error rates across the intact-
limbed, amputees, and the combined set of all subjects
are shown in Fig. 2. The average classification error rates
with the different feature extraction methods were lower
when using the MAG sensor than that achieved with the
ACC sensor, except when using the proposed GL based
features when both ACC and MAG achieved similar error
rates in recognizing the 40 classes of hand movements. The
justification for the enhanced performance is related to the
fact that all methods, except the proposed GL, only con-
sider the information extracted from the individual channels
without relating that to the information carried out by the
other channels. In this case, the proposed GL-based feature
extraction method achieved, on average, a classification error
rate of 5.94% and 13.54% across the intact-limbed and
amputees using the ACC data while achieving an average of
6.15% and 10.18% across the intact-limbed and amputees
using the MAG data (Bonferroni-corrected t-test, p = 0.75).

Moreover, we considered the classification error rates
of using the EMG only with different feature extraction
methods, including:

1) TD1 feature set which is made of RMS, integral-
absolute-value (IAV), number of zero-crossings (ZC),
WL feature, slope-sign change (SSC), and the AR
model parameters (5th order);

2) AR-RMS feature set: a combination of RMS and AR
model parameters (5th order);

3) TD2 feature set [7]: a combination of MAV, WL, AR
(4th order), and the log-variance (LogVar) feature;

2Available online in http://biosig.sourceforge.net/index.html.
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Fig. 2. Average classification errors across the intact-limbed, amputees, and
the full set of subjects using different sensors (error bars represent standard
deviation).

4) TSD feature set [15]: A combination of temporal-
spatial time-domain features.

The classification error rate using the EMG signals only
are shown in Fig. 3. These results clearly indicate that the
error rates achieved by the IM signals with our GL method
were significantly lower than that achieved with all feature
extraction methods on the EMG data.

Since the ACC and MAG error rates were not significantly
different from each other, we focused our attention to the
MAG signals. We tested the combination of the MAG (GL
features) with EMG (TSD features) signals which achieved
an average error of 5.92% on all subjects in comparison
to that of MAG only (achieving average error of 6.52%
across all subjects). In this case, the error rates achieved
by the combination of EMG (TSD features) with MAG
(GL features) were not significantly different from that of
using the MAG features only (Bonferroni-corrected t-test,
p = 0.25). This in turn provides an evidence to support our
null hypothesis in that, in the context of our experiments
with 20 intact-limbed and 2 transradial amputees, there
are no significant enhancements added by the combined
EMG+MAG on top of the MAG error rates when both the
temporal and the spatial MAG features are considered.
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Fig. 3. EMG classification error rates across all subjects with different
feature extraction methods (error bars represent standard deviation).

IV. CONCLUSIONS
We investigated the suitability of replacing the EMG

signals with IM signals rather than combining the two, as
it is usually done in the myoelectric control literature [7],
[10], because of evidence that the latter method results in
increased performance when temporal IM information is
used. Our experimental results support the hypothesis that
if the IM signals features were extracted in a way that
considers both the temporal and spatial information aspects,
rather than temporal only, then we could significantly reduce
classification error, without having to combine IMs with the
EMG signals. The finding in this paper is of significant im-
portance as it first indicates the importance of the temporal-
spatial information extraction and then it reduces the total
number of sensors required to operate a prosthetic hand,
while avoiding all the well-known non-stationarity problems
with the EMG signals. Our findings also agree with the
recent literature on the importance of magnetic fields from
skeletal muscles as a valuable physiological measurement
[21]. We have only tested the proposed IM features on twenty
intact-limbed and two transradial amputees offline. Further
real-time testing, with a larger group of prosthesis users, is
required to determine the efficacy of inertial measurements
in prosthesis control.
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