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Abstract— A human-in-the-loop system is proposed to en-
able collaborative manipulation tasks for person with physical
disabilities. Studies show that the cognitive burden of subject
reduces with increased autonomy of assistive system. Our
framework obtains high-level intent from the user to specify
manipulation tasks. The system processes sensor input to
interpret the user’s environment. Augmented reality glasses
provide ego-centric visual feedback of the interpretation and
summarize robot affordances on a menu. A tongue drive system
serves as the input modality for triggering a robotic arm to
execute the tasks. Assistance experiments compare the system
to Cartesian control and to state-of-the-art approaches. Our
system achieves competitive results with faster completion time
by simplifying manipulation tasks.

I. INTRODUCTION

Paralysis afflicts 5.5 million people in the United States
[1]. Persons with high-level paralysis rely on caregivers
and/or environmental modifications to accomplish the activ-
ities of daily living (ADL). While the adoption of personal
mobility devices and environmental control systems provide
some autonomy [2], [3], there is still a gap between the
activities enabled by these interventions and the needs of
the paralyzed population regarding the ADL. Research and
translational efforts in robotics and assistive technologies
(AT) indicate that these support technologies can bridge the
existing ability gap.

Assistive robotic manipulators have long been considered
as enabling technologies for self-supportiveness and inde-
pendence in accomplishing ADLs [4]–[6]. Commonly seen
assistive robotic arms such as the JACO arm and the MANUS
have 6-7 degrees of freedom, and admit execution of many
ADLs [7], [8]. However, it is challenging for people with
paralysis of arms to fully control an assistive system at the
required proficiency level [9], [10]. Even for non-paralyzed
populations, the traditional manipulator control interfaces re-
quire some level of expertise and exhibit occasional operator
error [11]. Better performance can be achieved by increasing
robot autonomy [4], [12].

The role of an assistive manipulator is to interact with the
local environment according to the desires of its user. For
persons with high-level paralysis, there is a need to develop
effective user interfaces for communicating human intent to
the robotic manipulator in a hands-free manner. The Tongue
Drive System (TDS) is a wireless assistive technology for
translating tongue motion to discrete commands [3], [13],
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[14]. Studies show that it is an effective hands-free interface,
with high throughput and accuracy as compared to other
devices such as EEG, EMG, eye tracker, and Sip-and-
Puff. TDS requires shorter training and calibration times
(below 5 minutes); users learn to interface the TDS quickly.
Importantly, the tongue muscle has a low rate of perceived
exertion and does not fatigue easily.

Meanwhile, the affordances of the robot assistant should
be communicated to the user in a seamless manner, so
that they may select what action to execute. Visual display
devices with dynamic menuing provide the necessary flexi-
bility, and are compatible with the TDS interface. Candidate
display devices include laptops, tablets, audio assistants, and
augmented reality (AR) glasses [15]. Recently, AR has been
applied to the rehabilitation and assistive systems fields. With
AR glasses, a user can control a virtual menu or program
[16]. Explored use cases include education for cognitively
impaired school children [17], surgical robotics [18], and
prosthetic grasping assessment [19].

The recent studies [20], [21] are most related to this work.
They use hands-free interfaces (eye gaze and EEG, or sEMG)
as input modalities to an assistive robotic manipulator for
performing pick and place, and grasp planning activities.
Intermediate phases of the routine must be controlled by the
user through the assistance of a nearby monitor that provides
AR feedback. The AR approach was shown to improve task
performance (time and error) relative to the lack of AR.

a) Contribution: Compared with prior approaches, our
system’s input modality is a TDS and the visual display is
a head-mounted AR system. The TDS is a robust interface
for signalling intent with minimum burden even in noisy
environments, making it more practical than other interfaces.
A headworn AR system, through head fixation, prevents gaze
to be broken from objects of interest, provides flexibility
without an extra monitor, and improves robot guidance by
providing a virtual menu with possible robot affordances.
Our work improves the autonomous capabilities of the
robotic arm through the integration of modern computer
vision algorithms and robotic planning methods. The overall
system detects manipulable objects on nearby surfaces and
provides an AR menu interface for choosing to interact with
them. The user selected high level menu commands signal
intent to the robotic arm, simplify the act of of manipulation
for user desired tasks, and lead to faster interaction times.

II. SYSTEM ARCHITECTURE

This section describes the human-robot collaborative sys-
tem, with Figure 1 depicting the structure of the human-
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Fig. 1. Block diagram of data flow for proposed system modules. Top-left: AR glasses recieves RGB-D images; bottom-left: vision system performs
object detection, localization and grasp detection; up-right: TDS receives user’s input and triggers robotic arm; bottom-right: a 7-DOF robotic arm performs
manipulation based on human intent.

in-the-loop system. There are two main sub-systems: the
autonomous robot (bottom row of blocks) and the human
interface (top row of blocks). The augmented reality sensors
provide visual input to the Vision System block consisting
of RGB-D images. After interpretating scene, it generates a
corresponding virtual menu of actions for the manipulator to
execute (META AR block). Once the AR presents the virtual
menu to the user, it waits for the user’s intent as feedback,
triggered via the TDS. The TDS input modality enables
hands-free operation by mapping tongue movements to but-
ton press operations for virtual menu selection. The selected
intent will then trigger the manipulator to autonomously
complete tasks (Manipulator block). The remainder of this
section describes the augmented reality (§II-A), vision (§II-
B), and manipulator (§II-C) systems.

A. Interface: Egocentric Vision through AR glasses

The AR system, a META-1 Developer’s Kit, plays the
critical role of transmitting rich visual information between
the human and the autonomous robot sub-systems. Using
AR to visualize actions and provide context-based menuing
systems is more efficient and intuitive [22], when compared
to other modalities. Further, the AR system’s visual sensors
provide a view to the robot similar to the user’s. The
processed scene matches the user’s field of view.

As shown in Fig. 1 (top-right), there is an AR menuing
system for detected objects. The interface is a Unity3D
canvas with interactive buttons controlled by the TDS.

B. Vision Interpretation of Users Environment

1) object detection: The vision system adopts the state-
of-the-art deep neural network architecture, YOLO [23],
to recognize objects in a scene. YOLO is a convolutional
neural network with 24 convolutional layers followed by 2
fully connected layers. YOLO’s design involves a simpler

pipeline and a unified architecture for improved run-time.
Some YOLO implementations achieve 150 fps processing
rates, which meet real-time requirement for vision-based
applications. To operate with high accuracy for the intended
application, the model is pre-trained on the PASCAL VOC
2007 train/val + 2012 train/val datasets. Fine-tuning uses a
manually collected dataset of office table objects.

2) object localization: Manipulation and planning require
the object location with respect to the manipulator. To
simplify the overall system, the manipulator base is assumed
to be fixed, as well as the surface the objects will lie on.
Establishing the variable AR camera reference frame relative
to the fixed manipulator frame involves localizing the camera
using an ARUCO [24] placed on the working surface (Fig. 1,
left). The 2D bounding box output from the object detection
stage is processed against the calibrated depth image to crop
the point cloud region of interest for post processing. Region
growing segmentation [25] crops the point cloud, with the
largest cluster kept (as a denoising step). After removing the
points belonging to the table surface, the object of interest
remains. From the point cloud, 3D bounding boxes are
obtained for object localization and manipulation purposes.

3) graspable locations: A second deep neural network
architecture recognizes graspable locations for robotic ma-
nipulation. Our architecture for grasp detection is described
in details in [26] with RGB-D input and confidence score
output. The network is pre-trained on COCO-2014 [27] and
finetuned on the Cornell dataset [28] with 1000 augmented
data each. This network outputs a list of grasp candidates
with a 5D grasp rectangle representation and corresponding
confidence score to inform the manipulator planning. A 5D
grasp rectangle representation, g = {x, y, w, h, θ}, describes
grasp configurations for a parallel plate gripper. The coordi-
nates (x, y) are the center of the rectangle, θ is the orientation
of the rectangle, and (w, h) are the width and height.



C. Interface: Human Intent to Autonomous Manipulation

Once the high-level manipulation command is selected by
the user via TDS [13], all relevant information for planning
is sent to the Manipulator system component, whose role is
to plan the movement of a 7 degree of freedom redundant
manipulator with a general purpose gripper. Path planning for
manipulation is performed via a modified MoveIt! package
in ROS. The modification admits path planning with mixed
initial and final configurations [29], [30], thereby avoiding
the need to solve the inverse kinematics of the redundant
manipulator. The initial configuration is the current joint state
of the manipulator, while the final configuration is the desired
gripper pose (position and orientation). The grasping task
relies on the object location and the approaching direction
as estimated by the vision system, which are input to
the path planner model of manipulator. The manipulator
autonomously completes the task without further user input.

III. EXPERIMENTS AND EVALUATION

Evaluation of the assistive system involved a pick and
place task. The goal is to pick up an object and place it
at a user specified location on the table. Upon starting all
processes, the system detects in real-time objects in the field
of view, then waits for the user to select the object and the
action. Selection is triggered by the TDS based on the AR
menu. Once the pick command is selected, a cross marker is
shown at the center of the field-of-view for user specification
of the placement location. The marker is projected on the
table for 3 dimensional location relative to robotic arm base
for manipulation. After the user triggers the menu again
(place option), the placement is autonomously executed.

We tested on 10 different types of objects commonly
seen. Each object undergoes 5 trials. We employ the same
evaluation criteria and experimental setup as [10]. An object
is randomly placed on the visible and reachable area to start
the experiment. The target placement location is 30 cm away
from pickup location. Placement success means the object
is within a 1cm larger boundary of the specified location
[10]. We compare our semi-autonomous AR+TDS pipeline
with manual Cartesian control, whereby the user controls,
via keyboard, the end-effector with 9 commands (rotation,
open and close end-effector and 6DOF movement).

All experiments were carried out with two computers. The
vision and manipulator modules are running on Linux ma-
chine with Intel core i7-4790K @ 4.00GHz and Nvidia Titan-
X GPU. The TDS and Meta AR modules are implemented
on Windows machine with Intel core i5-760 @ 2.80GHz
due to Windows dependency of APIs. TCP/IP is utilized for
communication between machines.

IV. RESULTS

Evaluation of the system performance involves compar-
isons with manual Cartesian control (Table I) and published
experiments (Table II). For the former, we recorded the
success rate, average task completion times, and number
of issued commands. Outcomes and averages for the five
experiments per object are given in Table I. Summarizing

robot affordances and automating the task execution reduces
the numer of commands issued by the user. Implicitly this
reduction should lead to a reduced cognitive burden on the
user. The overall operation speed of the pipeline is 5 times
faster then manually controlling the end-effector in all cases,
however the success rate degrades (76% versus 96%).

Comparison to state-of-the-art research in Table II pro-
vides statistics for two commonly seen manipulation tasks:
pickup and pick-and-place. The table reports the number
of objects tested and trials per object. Note that [20] is
excluded due to an incompatible test scenario. Compared
to [10] which moves a bottle with tongue interface and
a commercial robotic arm in 56s on average, we show
ours has competitive performance with less operation time
(32.8s on average). The work [9] applied a tongue operated
device to control a commercial robot end-effector step-by-
step for a pick-up task with 80% success rate. Our system
achieves competitive performance with 78% success rate
for a larger set of objects and with a lower completion
time (18.11±2.16 v.s. 70.1±15.3 s). Lastly, [21] applied non-
goggle AR for re-planning and utilized an EEG to initiate
a pickup task. The reported average operation time in [21]
is 92s with 82% on 3 different objects. Again, we achieve
a comparable success rate with lower completion time and
for a larger set of objects. Our pipeline achieves a desirable
time and accuracy trade-off on wider variety of objects.

V. CONCLUSION

We presented a collaborative human-robot framework for
a person with disabilities to guide manipulation tasks. Our
proposed assistive system provides enhanced autonomy by
integrating vision algorithms with augmented reality and
the TDS. The human-in-the-loop framework communicates
intent and completes tasks by simplifying the control of
manipulation tasks. We perform experiments to illustrate
the effectiveness of our system through analysis of the
success rate, execution time, and number of commands
issued. Future studies will include experimental studies with
human subjects with upper extremity paralysis to test the
effectiveness and cognitive burden of the proposed system,
as well as incorporate visual servoing algorithms to enhance
manipulation performance.
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