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Abstract— Injuries, accidents, strokes, and other diseases can
significantly degrade the capabilities to perform even the most
simple activities in daily life. While assistive technology becomes
more and more available to the people affected, there is still
a big need for user interfaces suitable for people without
functional hand movement. A large share of these cases involves
neuromuscular diseases, which lead to severely reduced muscle
function. However, even though affected people are no longer
able to functionally move their limbs, residual muscle function
can still be existent. Previous work has shown that this residual
muscular activity can suffice, to create an EMG-based user
interface, and e.g. allow for control of assistive devices. In
this paper, we enhance this user interface with additional
EMG-features and an improved training paradigm in order
to increase information extraction from recordings of strongly
atrophic muscles. The interface was tested and validated by
subjects with severe spinal muscular atrophy. Results show that
the used methods improve the decoding and thereby allow for a
considerable increase in performance when controlling a robotic
manipulator in a 3D reaching task.

I. INTRODUCTION

In our daily life, activities such as drinking, eating, or
taking a walk in the park are elementary parts that we per-
form without thinking. However, neuro-muscular diseases,
trauma or stroke can result in paralysis and thereby strongly
inhibit one’s ability to perform these tasks, which reduces the
mobility and independence of the person affected. In severe
cases, even simple activities of daily living, and thus, a self-
determined life in one’s own home may become impossible,
and people require personal care around-the-clock.

For some time past, assistive technologies for people with
motor disabilities have been developed to provide help and
relief in daily life. For one, power wheelchairs can, to a large
extent, restore the mobility of the individual. Furthermore,
technical aids are developed to restore the manipulation
capabilities of people with upper limb paralysis. While at
first passive and active arm support systems, were built to
provide help for people with remaining but weak arm and
hand function [1], [2], nowadays, robotic manipulators for
people without remaining hand function or arm movement
become more and more available [3].

However, control over the aforementioned manipulators
is usually achieved with a joystick, and therefore requires
the user to have remaining functionality in hand and finger
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movement [4]. This requirement prevents many people with
paralysis from efficient use of the already available assistive
technology. Many alternative approaches have been investi-
gated, e.g. the Tongue Drive [?], which consists of touch
sensors fixed on the palate to be activated with the tip of
the tongue, or the measurement of eyebrow movements via
piezo-based sensors [?].

Another solution to this problem is the use of Brain-
Computer Interfaces (BCI). In the past years, invasive in-
terfaces have been demonstrated to provide people with
tetraplegia with continuous control over robotic manipulators
[5], [6]. The high spatial and temporal resolution of these
implanted BClIs allows for a natural control scheme, in which
motor imagination from one limb is mapped to motion of
a robotic arm. In comparison, non-invasive BCIs provide a
much lower signal bandwidth and therefore are typically used
to decode discrete control commands or operate in a less
natural control scheme [7], [8]. One alternative approach to
BClIs can be the use of surface Electromyography sEMG as a
source for a human machine interface HMI. Currently, EMG-
based HMIs are commonly used for control of myoelectric
hand prosthesis. In [9] it was shown, that SEMG recordings
from residual muscle fibers of people with severe muscular
atrophy can be used to continuously control the endeffector
of a simulated robotic system. In this work, we present an
enhanced version of such an SEMG-based HMI, and assert
its functionality in a 2D and 3D reach task.

II. INTERFACE DESIGN

Joysticks, which are typically used to interface assistive
manipulators, provide the user with a continuous 3 degree
of freedom (DoF) control input. This control signal is then
mapped to command the endeffector velocity of the robot,
either in translational or rotational space. Naturally, a 3DoF
interface also allows for the control of lower dimensional
devices like a wheelchair as well as additional functions like
seat configuration, or e.g. a cursor on a tablet computer.

However, joysticks are not suitable for people with a se-
vere muscular atrophy resulting in loss of hand functionality.
Thus, our goal is to provide people with severe muscular
atrophy with such a continuous 3DoF interface, based on the
measurement of their remaining muscular activity. Such an
interface can then be used to control the endeffector velocity
of a robotic device. In [9] a proof of concept study was
conducted, in which two users with spinal muscular atrophy
(SMA) were able to control the translational movement of a
simulated robotic system. In that study, an amplitude based
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Fig. 1. Left: Exemplary sSEMG-signal at maximum voluntary contraction.
Right: sSEMG activity recorded from the same electrode during usage of an
SEMG-based interface, which is an order of magnitude lower in amplitude.

representation of the SEMG signals was used in combination
with a neural-network to decode the control signals. Since
sEMG measurements of muscular activity are composted of
the superposition of multiple motor unit action potentials
(MUAP), much information is encoded in the signals am-
plitude (see Figure 1).

However, analysis of SEMG-recordings from people with
progressed spinal muscular atrophy reveals, that variation
in amplitude may not be as distinct as in non-pathological
SEMG-signals. Figure 2 shows an sEMG-recording from
a person with SMA at maximum voluntary contraction
(MVC). Compared to the non-pathological MVC signal, the
amplitude is an order of magnitude lower. Zooming in on
the signal reveals, that the signal is composed of a sequence
of motor unit action potentials and as such, reduced activity
will not result in a prominent change in amplitude, but rather
in a change of rate of MUAPs.
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Fig. 2. EMG recording of maximum voluntary contraction from an atrophic
muscle. In the detailed view on the right single MUAP recordings are visible.

A. EMG decoding

In order to effectively acquire information from this kind
of SEMG-signals, additional features, representing time and
frequency-based components, should be applied. Thus, in
this work we extended the decoding procedure to use the
following four features:

o sEMG-amplitude

o Slope-Sign-Change

o Zero-Crossing-Rate

o Waveform-Length
To acquire the amplitude of the sEMG-signal, the polyno-
mial low-pass filter as presented in [9] is used. The other
features are calculated according to Egs. (1), (2) and (3), as
introduced in [10]:
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All used features are calculated online over a window of
N =150 samples () on each SEMG-channel. The features
Ry and R, allow for adjustment to baseline noise using the
parameters figs. and fi,c, respectively. These parameters can
also effectively be used, in order to implement an activity
detection, which on the one hand allows the user to create
an output signal with zero velocity, on the other hand, this
activity detection can be used to coordinate the procedure of
recording training data for the decoding algorithm.

B. Decoding Procedure

Based on the four features, as described above, SEMG
decoding is acquired using Gaussian Process regression.
The procedure for setting up this decoder consists of the
following steps:

« Application of electrodes,

« Recording of rest signal,

o Configuration of features,

o Recording of training data,

o Calculation of training dataset,
o Gaussian process modeling,

e Online regression.

1) Application of electrodes: sEMG-signals are recorded
using eight Delsys Trigno wireless SEMG-sensors. These
sensors are attached to the skin surface using medical grade
double-sided adhesive tape and signals are wirelessly trans-
ferred to the Trigno base-station and digitized at a sampling
rate of 1kHz.



2) Recording of rest signal: Once the electrodes are
placed, 5 seconds of sEMG-data X3X5°°° are recorded,
while the user is in a resting state. This data is used to
calculate the bias, which is subtracted from the SEMG-
data-stream in order to remove the DC component of the
sEMG signal. Additionally, this data is used to calculate
the parameters ussc and p,. for the respective features, such
that these features show no activity within this data-set. This
calculation is performed using a binary search to fulfill the
following conditions:

Vie{1,...,4850} : Rese(Xrest[i, ..., i+149]) =0 (4)

Vie{1,...,4850} : Rye(Xrest[is...,i+149]) =0 (5)

The combination of features can now efficiently be used to
detect whether a user is resting or in an active state, by use
of a threshold-crossing-method.

3) Recording of training data: To initialize the Gaussian
Processes to decode the velocity commands, training data
of the user’s sSEMG-activity needs to be recorded. Thus, the
user is sequentially asked to provide SEMG-activity which he
intends to be associated with motion along the cardinal axes
(i.e. left, right, forward, backward, up and down). Within this
process, the activity detection is used to track how much
sEMG-data has been recorded for a desired direction, and
notify the user to relax, as soon as enough data is recorded
(typically 2 seconds of data per direction). In order to be
able to separate and label the SEMG-data with the directions
accordingly, the user is requested to relax for at least 1
second, after each directional activity.
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Fig. 3. Top: Exemplary training dataset and the data selected for labeling,
based on the activity detection. Bottom: Generated labeling for the relevant
data samples, based on the known sequence of directional activity.

Recording of one complete cycle of directional training
data lasts approximately 35 seconds. To achieve variety in the
user’s SEMG signals, typically three repetitions of directional
training are recorded.

4) Calculation of training dataset: From each training
dataset, 2000 samples of each directional activity are se-
lected for labeling based on the activity detection signal.
Additionally, the 1000 samples of continuous resting activity,
which follow each directional training, are also selected.
The selected samples can easily be labeled according to the
known sequence of directional activity. An exemplary plot
of a single training data set and the created labeling can be
seen in Figure 3. To achieve the three degree of freedom
velocity decoding, three independent Gaussian Processes are
used, each to model one degree of freedom, based on the
generated training dataset.

5) Online regression: Once the Gaussian Processes are
calibrated, they can be employed online, in order to decode
the user commands from the sSEMG-activity. Since indepen-
dent Gaussian Process are used for the three single degrees
of freedom, users can also produce combined commands.
The online decoding process is depicted in Figure 4.
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IIT. ASSESSMENT

To assess the performance of the SEMG-based interface,
we tested it with two 49-year-old female subjects (S1 and
S2) suffering from spinal muscular atrophy. Both subjects
have also participated in [9] and therefore have previously
used sEMG-based interfaces. However, the last time that
they took part in such a study was 2.5 years prior to the
experiments reported here. Additionally to the two subjects
affected with muscular atrophy, data was also recorded from
one subject (SR, age 27, female) with no known medical
condition. Subject SR has regularly used the sEMG-based
interface over the past two years in laboratory conditions for
testing and evaluation. Therefore, SR can be considered as
a very experienced user and data from this subject serves as
a baseline. All subjects gave written consent to participate
in the study, which was approved by the ethics commission
of the faculty of medicine at the Technical University in
Munich, Germany.

Assessment of the interface is composed of an offline
evaluation of the EMG data and an online evaluation in
which the subjects performed a reaching task based on
Fitts-Law [11]. Offline evaluation is used to calculate the
contribution of the individual electrodes and features to
the calibration of the EMG-decoder. Online evaluation was
performed to see how well the subjects could actually use
the interface in a closed loop task.

Subjects S1 and S2 took part in the experiments in four
sessions conducted on four consecutive days. Due to the
severe muscular atrophy, electrode placement (see Figure 5)
was performed based on visual inspection of the EMG-
signals in combination with the feedback of the participants



Fig. 5.
each participant. Eight surface EMG-sensors were used respectively. Left:
participant S1; Right: participant S2.

Exemplary placement of the electrodes at the right arm of

TABLE I
LIST OF MUSCLES ANATOMICALLY CLOSEST TO RECORDING SITES

Electrode placement

S1 S2
thenar thenar
hypothenar flexor digitorum superficialis

flexor carpi radialis
extensor digiti minimi
brachioradialis
extensor carpi ulnaris
triceps brachii
pectoralis major

extensor digiti minimi
flexor carpi radialis
flexor carpi ulnaris
brachioradialis
biceps brachii
pectoralis major

about locations at which they were able to feel their remain-
ing muscular activity. In fact, shifting electrode position by as
much as 1 cm could result in complete loss of a viable EMG-
signal. Placement of electrodes was manually optimized over
the four experimental sessions. The final electrode placement
is shown in Table I which lists muscles anatomically most
closely related to the electrode placement, based on the
physiology of the human arm. However, it has to be noted
that due to the strong muscular atrophy, actual muscles that
have been recorded may differ from this list.

Once the electrodes were placed, the decoder initialization
was performed as described in Section II. After decoder-
calibration, online assessment was performed using a 2D
and a 3D fitts-task. The 2D task was realized using a virtual
environment displayed on a computer screen, while for the
3D task, a DLR light-weight robot was used. In the 2D task,
subjects could control the velocity of a cursor moving in
the virtual environment based on the velocity commands
decoded from their EMG-signals. The virtual environment
was designed to represent an area of 0.6m by 0.6m in
which the cursor (circular shape with radius of 0.01m)
could be moved with maximum velocity of 0.2m/s. Circular
targets with radius (0.025m and 0.0325m) were presented
at a defined distance (0.16m, 0.24m, 0.32m) to the current
position of the cursor. Upon appearance of the target, subjects
had to move the cursor within the target area. A target was
counted as acquired, when the cursor was fully enclosed and
had reached zero velocity. If the task was not accomplished
after 22 seconds, it would be aborted and counted as timed-
out. The task was split in two parts, a training part in which
12 targets were presented in order to get acquainted with the
interface and a testing part in which 36 targets had to be
acquired, which was used for the actual assessment.

The six possible variations resulting from the two target-

radii and the three target-distances, were pseudo-randomly
permuted to achieve uniform distribution of these conditions.
After the 2D task, a 3D fitts task using a DLR light weight
robot was performed. Similar to the virtual environment,
the reachable area of the robot was limited to a cube with
edge length of 0.6m and the endeffector-velocity of the
robot was limited to 0.2m/s. The target to be reached was
made of a sensorized foam ball mounted on a telescopic
rod. In this task, the target diameter was fixed and it was
placed in the workspace of the robot at a randomly selected
position, having a distance pseudo-randomly chosen from
four available options (0.16m 0.24m 0.32m 0.4m). To acquire
the target, subjects had to touch it with a spherical tool held
by the robot, which was detected from an accelerometer build
into the target. Similar to the 2D task, a task was counted as
timed-out when not reaching a target within 22 seconds and
subjects could get acquainted with the task in the first 12
trials, followed by 36 trials to be evaluated in the analysis.
Figure 6 depicts one of the subjects while performing the
3D fitts-task with the robotic system.

Fig. 6. S2 performing the fitts tasks with a 7 DoF light-weight robot. The
translational velocity of the endeffector is commanded with the sSEMG-based
interface. The yellow ball depicts the sensorized target ball.

IV. RESULTS

To analyze the contribution of the single electrodes and
the respective features, an offline analysis based on the data
gathered during the training procedure was conducted. In this
analysis, features were sequentially added for initialization
of the Gaussian Process, based on their contribution to the
decoding. I.e. In a first run, 32 (four feature-types times eight
electrodes) Gaussian Processes were calculated each on one
distinct feature-electrode-combination. For this calculation,
two of the three available training data-sets were taken, while
the third was used to calculate a root-mean-squared error
to rate the performance and detect the feature with highest
information content. In the next step, this “best feature” was
combined with each of the remaining 31 features to find the
second most relevant feature. This process was iteratively
continued, until in the end, all features are rated according
to their contribution.

Figure 7 (main plot) depicts the root mean squared error
over the first 15 steps of this iterative process, using the



training data of day 4 for subjects S1 and S2 and a reference
data-set for SR. It is notable, that the information gain per
added feature is much stronger for non-pathological subject
SR compared to S1 and S2. The subplot in the top-right
corner shows the occurrence of the individual feature classes,
from which no preferred class of features can be identified.
The iterative analysis also revealed, that information from
each single electrode is used at the latest after adding 11
features to the decoding process (this information is not
depicted in the plot).
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Fig. 7. Results of the feature contribution analysis when iteratively adding
features to to the decoding process. Main plot: RMS-error with increasing
number of features. Subplot: Number of occurrence per feature class among
the 15 best features.

While this analysis suggest, that the selected features and
the optimized electrode placement contribute well to the
decoding of 3DoF velocity commands from sEMG, the more
important aspect is, whether this approach also generalizes
well during online decoding. Therefore, subjects S1 and S2
performed a reaching task based on Fitts’ Law in each of the
four experimental sessions. In the field of human-computer
interaction, Fitts’ Law is widely used in order to compare
information transfer in human reaching tasks [?]. According
to Fitts’ Law, the movement time (MT') needed for a reaching
motion is directly proportional to the Index of Difficulty (ID),
which is computed according to Eq. (6), where D is the
distance to the target, and W if the width of the target along
the direction of motion.

ID = logs (\1; + 1> (6)

In this study, reaching tasks were either performed using
a cursor moving in a virtual environment, or a robotic
hand-arm system. Having multiple repetitions of reaching
tasks, with different IDs, one can calculate the regression
line as depicted in Figure 8. From the figure, it is notable,
that performance of subject S1 increased on day 3 and 4
compared to the first two days. Furthermore, it is notable, that
movement times of the experienced user SR are shorter than
for subject S1. For numerical comparison of the performance
in a Fitts’ task, one can calculate the Index of Performance
(IP) as:

-l Zm: ID; (7)
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Fig. 8. Results for the three-dimensional Fitts’ task over four days for
subject S1 in comparison to the non-pathological subject SR.

TABLE II
INDEX OF PERFORMANCE AND NUMBER OF TIMEOUTS FOR THE 2D AND
3D FITTS’ TASK.

2D 3D
Subject | Day | IP | #TO | 1P| #TO
S T | 0573 ] 0 | 0366 ]| 10
S 2 | 0606 | 0 | 0324 2
ST 3 | 0460 | 2 | 0403 | 0
ST 7 [0928 ] 0 | 0453 2
S2 T | 0814 0 | 0481 | O
S2 2 | 0715 | 0 | 0491 | 0
S2 3 10966 | 0 | 0569 | 0
S2 4 0995 | 0 | 0605] O
SR - | 1154 | 0 | 0630 | O

Table II lists the index of performance and the number of
timed-out reaching tasks (#TO) for the 2D and 3D tasks for
all subjects. An improvement in performance is evident.

V. DISCUSSION

The goal of this study was to design an SEMG-based
interface which allows people with severe muscular atrophy
to continuously control assistive devices in three degrees of
freedom. To achieve this, several improvements have been
made to the interface design as used in the proof of concept
study [9]. To verify the improvement, reach and grasp tasks
have been performed and analyzed. The offline analysis of
the information contribution suggests that all feature classes
used in the decoding process provide information in the
decoding. As one would expect from the physiology of
the SEMG signal of atrophic muscles, a higher number of
features/electrodes is needed in the decoding process as
compared to non-pathological EMG-signals.

The results of the 2D and 3D Fitts’ task show that the
performance of subjects S1 and S2 gets close to that of the
reference subject SR, even though the amount of information
acquired from atrophic muscles is lower than in regular
EMG. Additionally, it has to be noted, that subject SR has a
very long experience in using the sEMG-based interface to
control movement of a robotic arm (>50 hours of net usage).
Based on this, it would be very interesting to see, whether
subjects S1 and S2, as well as other subjects with muscular
atrophy are able to achieve comparable performance after



long term training.

In comparison to the original approach of [9], it is evident,
that the performance could be considerably improved. The
task performed in the original approach was comparable to
the 3D Fitts’ task, except that target distance was constantly
kept at 0.3m. Average reaching times in the original approach
were approximately 16, 40, 37 and 23 seconds, which is
considerably higher than the average times for the two
longest distances in the results of this study (<16 seconds
in all sessions).

The results of this study suggest, that the devised SEMG
based interface can be used by people with atrophic muscles
to move a robotic manipulator in three degrees of freedom.
Additional studies have to be conducted to analyze, whether
control achieved with this interface is precise enough to
accomplish functional tasks in combination with a robotic
system. Furthermore, the interface needs to be validated with
a larger group of users as well as users with muscular atrophy
resulting from other medical conditions.
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