
  

 

Abstract— Current experimental techniques impose spatial limits on the number of neuronal units that can be 

recorded in-vivo. To model the neural dynamics utilizing these sampled data, Latent Variable Models (LVMs) 

have been proposed to study the common unobserved processes within the system that drives neural activities, 

through an implicit network with hidden states. Yet, relationships between these latent variable models and 

widely-studied network connectivity measures remained unclear. In this paper, a biologically plausible latent 

variable model was first fit to neural activity recorded via 2-photon microscopic calcium imaging in the murine 

primary visual cortex. Graph theoretic measures were then applied to quantify network properties in the recorded 

sub-regions. Comparison of weighted network measures with LVM prediction accuracy shows some network 

measures having a strong relationship with LVM prediction accuracy, while other measures do not have a robust 

relationship with LVM prediction accuracy. Results show LVM will achieve high accuracy in dense networks.  

I. INTRODUCTION 

Since the late 1950s, analyses of in-vivo single-unit recordings in the primary visual cortex have focused 
on correlating activity of individual neurons with observable features of visual stimuli [8]. However, not all 
neurons can be confidently classified as maximally responding to a single stimulus feature. Anatomically, it 
is known that primary sensory regions receive inputs from areas not involved with the stimuli of interest [4].  

Imaging techniques have made it possible to record the activity of many neurons simultaneously, in-vivo, 
while an animal is awake [6]. Applying graph theoretic tools on these high-volume simultaneous recordings 
allows for novel analyses of brain networks. Graph theory can efficiently characterize network types and 
elucidate important network properties [1]. For example, in the study of sensory perception, this confluence 
of techniques allows for a change from pairwise associations between individual sensory neurons and sensory 
stimuli, to network-level measures of sensory representation. Conventional graph-theoretic measures have 
often evaluated the explicit network where nodes and edges correspond to neuronal units recorded and 
statistical dependences between these neurons respectively [1]. Yet, the explicit neuronal population dynamics 
could be modulated by latent variables or implicit network with unobservable nodes and edges, where the 
implicit activities were not recorded [5].  

 Therefore, it is plausible that insights into the function of sensory areas can be gained from application of 
modelling techniques with reduced assumptions on the computational properties of neuronal networks. Recent 
research on latent variable models provides the mathematical techniques for such models with limited 
assumptions [7]. One biologically plausible model, rectified latent variable model (RLVM), has been shown 
to accurately predict the activity of neurons in the rat barrel cortex [11]. Through simulation and application 
to in-vivo 2-photon imaging, the authors show their model accurately describes the activity of the network, 
and can reveal sensible, interesting, variables driving the activity of the network [11]. A particular strength of 
this model is that it is able to identify a small number of previously unknown, important factors, driving the 
activity of many neurons. RLVM has made two important assumptions about the nature of the inputs to the 
recorded network. First, the latent variables are constrained to non-negativity to simulate neuronal behavior, 
as there is no neuronal analog of ‘negative activation’. Inhibition is simulated in this model as a negative 
connection weight from latent variable to cell. Second, the model behaves similar to traditional dimensionality 
reduction techniques while making no assumption regarding the relationship between latent variables. While 
such LVMs have been developed to predict the neuronal output from the stimulus and/or other inputs from 
neurons, the connections between these latent variables and explicit network properties remained unclear. This 
paper aims to bridge the gap between the modeling frameworks of the explicit network and the implicit 
network. 
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II. METHOD 

A. Neuronal Recordings 

This analysis utilizes 2-photon calcium imaging recordings from the murine primary visual cortex collected 
by the Allen Brain Institute [2, 3]. The dataset analyzed here includes 488 recordings, with a total cell count 
of 24,185. Each recording is approximately one hour long, and includes anywhere from 11 to 242 neurons. 
Each recording is viewed as a separate network with graph-theoretic measures and model application both 
computed on a per-recording basis. Graph-theoretic measures are normalized by the size of the network in 
order to compare across recordings. The activity of each neuron is represented as the change in fluorescence 
at 30Hz divided by the total fluorescence over a 2-second moving-window average (df/f) [15]. All 
preprocessing is performed by the Allen Institute as detailed in technical documentation; this analysis begins 
with the df/f trace for each cell [13, 14, 15]. Recordings were obtained from six sub-regions of the murine 
primary visual cortex. Description of recording locations can be found in [13].   

B. Network Measures 

Graph theoretic measures allow for brain networks to be classified and analyzed in previously unexplored 
ways. In this analysis, six standard, weighted, network measures are employed to efficiently characterize the 
recorded brain networks. First, the weight matrix of each network is quantified with pairwise Pearson 
correlation coefficients (R2). The absolute value of the correlation coefficient is used to represent each 
recording as a weighted, undirected graph. Next, graph measures are computed from this weight matrix using 
Brain Connectivity Toolbox in MATLAB [10]. The density of each neuron is computed as average of the 
linear correlations for each node. Density is used in place of the more common total weight measure, due to 
the fact that each recording includes a different number of recorded cells. Clustering coefficient measures the 
relationships between groups of three nodes and is computed as a ratio of the sum of weights between such 
triangles and the largest possible weight (which in this case is 3). The next two network measures are related 
to distance, where the distance between nodes is represented as the inverse of the correlation coefficient. Path 
length measures the shortest distance between two nodes. Path length includes one value for each pair of nodes 
in the network, and similar to the density measure above, is represented in the current work as an average for 
each neuron.  Betweenness measures the number of shortest paths containing each neuron. This measure results 
in a single value for each neuron, and is divided by the number of nodes in each network for appropriate 
comparison across recordings. Node Centrality and Community Structure are both measures of network 
modularity [10].    

C. Rectified Latent Variable Model 

RLVM will fail to predict neuronal behavior when including neurons with little information (low signal-
to-noise ratio). A criterion of signal-to-noise ratio (SNR) greater than one was applied. SNR calculated as a 
comparison of raw df/f trace to filtered signal as described in [11]. Preliminary analysis showed that as SNR 
decreases, so does RLVM prediction accuracy. A second preliminary analysis was conducted to evaluate the 
effect of the number of latent variables on the accuracy of model prediction. The number of latent variables 
was varied from 5 latent variables, increasing in steps of 10 latent variables, to a maximum number. The 
maximum number of latent variables was limited for each recording individually to 90% of the number of 
cells in the network. This preliminary analysis found a plateau of maximum model fit when the number of 
latent variables reached approximately 80% of the number of cells. A comparison of the model fit with 5 latent 
variables vs. 80% number of latent variables as cells can be found in Figure 1. 10% of neurons in each region 
are displayed for clarity, with the subset chosen across the total range of values per region. Each application 
of RLVM included 5-fold cross-validation as described in [11]. 

D. Comparison of Network Measures and RLVM Accuracy 

To illustrate the relationship between graph-theoretic measures and the RLVM fit, each network measure 
was computed to obtain a local value per-neuron and plotted vs. the model fit of the RLVM on a per-neuron 
basis. Model fit (also referred herein as accuracy) is expressed as the Pearson correlation between predicted 
and observed neuronal activity. Individual recordings show a range of model fit values across neurons, with 
most recordings having neurons that were both highly accurately modeled (above 0.6 correlation) and neurons 
that were not well predicted (close to 0 correlation). Due to the range of model fitting per neuron in each 
recording, individual-neuron measure comparisons are more appropriate than the recording averages. Pearson 
correlations (including p-value) between network measures, across all recordings, are displayed in Table 1, 
while Table 2 relates these network measures with RLVM accuracy per region, also via R2. Figure 2 shows 
node density and corresponding RLVM prediction accuracy for each of the ~24,000 analyzed neurons. There 
is an observable lower bound in the relationship between density and RLVM accuracy, with R2 being highly 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343285doi: bioRxiv preprint 

https://doi.org/10.1101/343285
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

significant (likely due to large number of neurons). It is also clear that a range of correlations exists between 
node density and RLVM accuracy. To quantify this observation, quantile regression was applied in 10th 

percentile increments. Figure 3 plots the regression coefficients between density and RLVM accuracy as well 
as the intercept values.  

III. RESULTS 

Figure 1 illustrates that increasing the number of latent variables typically increases the accuracy of the 
model prediction. Every sub-region was tested for significance via Student’s t-test. Using a high number of 
latent variables was found to significantly increase the model fit (all p-values below 0.001). However, although 
the average RLVM prediction accuracy for each recording increases with increased number of latent variables 
(as expected), some individual neurons show decreased model fit, suggesting a possible limitation in the model 
that may provide room for improvement. The points below the diagonal on Figure 1 illustrate this observation.  

Figure 1. Comparison of Number of Latent Variables: Maximum number of latent variables (80% of number 
of cells) vs. five latent variables. 10% of analyzed neurons are displayed for clarity. Best viewed in color. 

 

Table 1 lists observed relationships between network measures; showing density, path length, and 
clustering coefficient are highly related in definition and observation. Betweenness (which is in this same 
family of measures depending on node out-weight) of the observed networks does not show a similarly strong 
relationship with density, path length, or clustering coefficient. Using R2 to quantify the weights matrix in this 
case results in a fully connected matrix, where shortest paths are typically direct connections between neurons. 
This results in very few paths that include any intermediary neurons and potentially skews the betweenness 
measure.  Node centrality and community structure are slightly more complex measures of networks that have 
been suggested as important measures for network organization. They are found to have little relationship with 
the other measures examined here.  

TABLE I.  CORRELATION BETWEEN NETWORK MEASURES 

Pearson 

Correlation 

Coefficient 

Node 
Density 

1/Path 
Length 

Clustering 
Coefficient 

Node 
Centrality 

Betweenness 

1/Path Length 0.956*     

Clustering 

Coefficient 
0.975* 0.952*    

Node 

Centrality 
0.102* 0.059* 0.029*   

Betweenness 0.191* 0.085* 0.075* 0.212*  

Community 

Structure 
-0.134* -0.135* -0.145* 0.053* -0.008 

(*P<0.001) 
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Table 2 compares each network measure with the RLVM accuracy. Strong, highly significant, correlations 
are observed between density, path length, clustering coefficient and RLVM accuracy. This is expected, as 
highly correlated neurons are likely to share inputs, while the RLVM attempts to predict activity of neurons 
based on common (hidden) inputs.  

TABLE II.  CORRELATION BETWEEN  NETWORK MEASURES AND RLVM ACCURACY 

Pearson Correlation 

Coefficient 

Region 
Average 

VISal VISam VISl VISp VISpm VISrl 

Node Density 0.554*  0.703*  0.595*  0.584*  0.655*  0.640*  0.622  

Inverse Path Length 0.536*  0.635*  0.609*  0.582*  0.599*  0.650*  0.602  

Clustering Coefficient 0.366*  0.534*  0.528*  0.497*  0.512*  0.551*  0.498  

Node Centrality 0.319*  0.308*  0.252*  0.250*  0.330*  0.223*  0.280  

Betweenness 0.279*  0.371*  0.252*  0.234*  0.302*  0.174*  0.269  

Community Structure 0.069*  0.060  0.000  -0.052*  0.016  -0.090*  0.001  

(*p < 0.001) 

 
Linear regression was applied to fit each network measure, as well as combinations of network measures, 

to predict accuracy of the RLVM. As expected from the high correlation of density with path length and 
clustering coefficient, when applying linear regression to predict RLVM accuracy from these network 
measures, it was found that fitting density to RLVM accuracy achieves a high level of regression fit that is not 
greatly improved when including more measures in the regression model. When considering application of 
RLVM to a network, density is an efficient and effective way to quickly estimate how accurately RLVM will 
predict network activity. It can also be seen from Figure 2 that there is a range of RLVM fit corresponding to 
similar density measures, with a clear lower bound. This is where quantile regression is useful.  

 

 

Figure 2. Minimum accuracy of RLVM increases when node density and clustering coefficient increase, and 

path length decreases, respectively. 

 

Figure 3 shows the intercepts and regression coefficients for quantile regression between density and RLVM 
accuracy. Both of these panels illustrate a positive relationship between percentile and regression coefficients. 
As the percentile increases, so does the coefficient. This means that the lowest quantile represents a lower 
bound for the strength of relationship between density and RLVM accuracy. Tables 1 and 2 show that density 
has the strongest relationship with RLVM accuracy, hence density is used as the exemplar herein. The results 
suggest that node-density can be used to easily estimate a lower bound for expected RLVM prediction accuracy.  
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(a)                      (b) 

Figure 3. Quantile regression estimates of (a) baseline and (b) weight of node density for RLVM accuracy. 

The shaded area corresponds to the 95% confidence interval band of the estimate in each region. 

 

IV. DISCUSSION 

Latent variable models attempt to identify the common driving factors of a network and predict the activity 
of the network nodes based on these previously unknown (possibly unobserved) driving factors. The RLVM 
allows for limited assumptions to be placed on the nature of the inputs to the network, in order to generate 
novel observations. This model can be a powerful tool for generating new insights into the functional inputs 
to brain regions. As the RLVM attempts to identify common factors that drive many nodes in the network, it 
is reasonable to expect that neurons with similar behavior profiles will be more accurately modeled. This effect 
is observed, with a high degree of correlation between measures of local connectivity (in this case density, 
inverse path length, clustering coefficient) and RLVM prediction accuracy.  

In practice, model selection can be a time-consuming process; this analysis has shown that it is possible to 

employ simple network measures to identify the applicability of a certain type of model to neuronal data. The 

method can be extended in three ways 1) via different weight matrix quantification methods 2) with more 

graph-theoretic measures 3) testing with multiple types of network models. A directed graph quantification 

can be attained through use of measures such as transfer entropy, Granger causality, or more sophisticated 

methods of effective connectivity [1]. Investigation of various network measures could elucidate even 

stronger relationships between graph-theoretic measures and certain classes of network models. The current 

work suggests these particular network measures may be most suited to estimate a lower bound for prediction 

accuracy of the RLVM, so that if a network displays high density, short path length, and/or high clustering 

coefficient, the RLVM is likely to obtain high prediction accuracy per node. 
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