
 

Abstract—Motor-evoked potentials (MEP) are one of the most 

important responses to brain stimulation, such as supra-threshold 

transcranial magnetic stimulation (TMS) and electrical stimulation. 

The understanding of the neurophysiology and the determination of 

the lowest stimulation strength that evokes responses requires the 

detection of even smallest responses, e.g., from single motor units, 

but available detection and quantization methods are rather simple 

and suffer from a large noise floor. The paper introduces a more so-

phisticated matched-filter detection method that increases the detec-

tion sensitivity and shows that activation occurs well below the con-

ventional detection level. In consequence, also conventional thresh-

old definitions, e.g., as 50 µV median response amplitude, turn out 

to be substantially higher than the point at which first detectable re-

sponses occur. 

The presented method uses a matched-filter approach for im-

proved sensitivity and generates the filter through iterative learning 

from the presented data. In contrast to conventional peak-to-peak 

measures, the presented method has a higher signal-to-noise ratio 

(≥14 dB). For responses that are reliably detected by conventional 

detection, the new approach is fully compatible and provides the 

same results but extends the dynamic range below the conventional 

noise floor. The underlying method is applicable to a wide range of 

well-timed biosignals and evoked potentials, such as in electroen-

cephalography. 

I. INTRODUCTION

Motor-evoked potentials (MEP) are an important response 

phenomenon in brain stimulation. If motoneurons in the pri-

mary motor cortex are activated directly or indirectly, they re-

spond with action potentials, which are transmitted down the 

spinal cord to the lower motoneurons [1, 2]. The lower moto-

neurons route the signals to the muscles, where they can be 

detected as MEP waves through electromyography (EMG). 

MEPs provide one of the few directly observable responses of 

the brain to stimuli and individualize the stimulation strength. 

Furthermore, MEPs are a key to understanding the biophysi-

cal and neurophysiological mechanisms of brain stimulation, 

to establishing safety limits, and to achieving individual dos-

ing [3, 4]. In FDA-approved treatment with transcranial mag-

netic stimulation (TMS), for instance, the so-called motor 

threshold is defined based on MEPs and is the key safety as 

well as dosage parameter [5]. 
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The response amplitudes of several MEPs graphed over the 

corresponding stimulation strengths forms an s-shaped curve, 

often named as input–output (IO) or recruitment curve [6, 7]. 

For high stimulation strengths, the responses saturate and 

form the high-side plateau of the sigmoidal IO curve around 

several millivolts, dependent on the specific muscle. If the 

stimulation strength is reduced, the response amplitude de-

creases monotonically until the responses appear to cease en-

tirely and fall below a low-side plateau that is formed by en-

dogenous activity, biosignals from unrelated neural and mus-

cular sources, and recording noise. Thus, the dynamic range 

of MEP amplitudes can exceed a factor of 1000 [8]. 

Typically, the noise floor forming the low-side plateau for 

a resting motor system of a conscious subject, e.g., for TMS, 

can reach 10 µV [8]. The motor threshold is defined slightly 

above this plateau at 50 µV median response amplitude as a 

compromise between detecting also subtle responses and 

sufficient detection robustness [4]. Such threshold definition 

assume that they are close to the smallest occurring evoked 

activity. The noise floor, however, is not a purely technical 

property of the used amplifier, but for modern amplifiers 

widely depends on external conditions, such as the electrode 

and source impedance, body temperature, and biosignals from 

unrelated sources. Thus, simple technical advances of am-

plifiers do not solve the problem. According to the established 

interpretation, smaller responses causally evoked by stimula-

tion of motor efferences might either not exist or could not be 

detected for physical reasons. 

So-called active stimulation into a pre-activated motor sys-

tem is used to find smaller effects of single TMS pulses [9]. 

However, it is not obviously clear if such active pulses actu-

ally immediately depolarize neurons or only modulate endog-

enous signals. First approaches for looking below the noise 

floor to find MEPs averaged the responses to many individual 

stimuli, as a solution that is also typical for other subtle bi-

osignals, such as in electroencephalography (EEG) [10]. Alt-

hough these experiments hinted that there is evoked motor ac-

tivity well below the motor threshold, averaging does not 

solve the problem. Averaging of responses to several different 

stimulation strengths or even of an entire IO curve would re-
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quire many trials and lead to unacceptably long session dura-

tions. More importantly, however, MEPs are inherently highly 

variable, which reflects endogenous signaling at the site of 

activation and is part of the information [8, 11]. Averaging 

extinguishes this variability and the contained information. 

Furthermore, the variability is not Gaussian distributed but 

has a highly skewed distribution so that averaging does not 

result in an exemplary representation of the many noisy indi-

vidual MEPs, but is dominated by outliers [12]. 

In this paper, we introduce an MEP analysis method based 
on a learning matched-filter detection, which can quantify the 
output amplitude more accurately and use the entire spectral 
signal bandwidth. The method estimates a detection filter con-
currently through iterative learning from previous responses. 
The approach achieves a high signal-to-noise ratio (SNR) through 
extraction of the similarities of many responses and therefore 
shares some characteristics with averaging but translates them 
to the individual MEPs. In contrast to simple time-synchro-
nized averaging approaches, the matched-filter method does 
not require repetitions at the same stimulation strength but 
merges information from all applied valid stimuli with a wide 
range of stimulation strengths. In consequence, it offers better 
signal-to-noise ratios at notably lower numbers of stimuli and 
undistorted amplitude readings for each MEP. 

II. METHODOLOGY FOR THE DETECTION OF MEPS WITHIN 

THE NOISE FLOOR 

MEPs appear in response to a stimulus in the primary motor 

cortex as a typically bipolar wave with a bandwidth of less 

than 200 Hz. Electrophysiologists conventionally quantify the 

amplitude of MEPs by their peak-to-peak voltage [13]. Alt-

hough this established method is simple, it is relatively insen-

sitive to weak MEP waves but highly susceptible to noise. As 

it uses positive and negative maxima, it converts even simple 

interference and noise, such as additive Gaussian noise, into 

highly skewed and mathematically intricate extreme-value 

distributions [8]. Strictly, those extreme-value distributions 

would have to be taken into account for correct statistical anal-

ysis, but practically never are. 

Some authors suggested the use of the area under the MEP 

curve instead of MEP peak-to-peak voltage for higher accu-

racy [14-16]. However, despite the noise-reducing low-pass-

filtering properties, the MEP area has several severe disad-

vantages. It depends on the amplifier filter properties, such as 

the high-pass filter cutoff; it requires a definition of start and 

end of an MEP, which influences the readings; it provides im-

practical units (volt-seconds) and is incompatible with tradi-

tional peak-to-peak quantification as well as established safety 

rules [4]. In consequence, MEP area is rarely used. 

In contrast to conventional approaches, the proposed detec-

tion method exploits the entire spectral bandwidths of MEPs. 

We assume that the MEP amplitude is an actual or virtual value 

that underwent shaping through the neuromuscular transmis-

sion system as shown in Fig. 1. Without loss of generality, 

nonlinear transformations are not required. Ideally, the detec-

tor maximizes the signal while minimizing the impact of noise. 

The in principle most appropriate linear detector in the pres-

ence of additive Gaussian noise, such as the dominant share 

of amplifier and electrode noise, is a correlation detector or a 

filter with the complex conjugated and mirrored spectrum, i.e., 

time-reversed impulse response of the assumed MEP shaping 

filter (see Fig. 1) [17]. As the method is entirely linear, it can 

be linearly linked and calibrated to conventional peak-to-peak 

readings. However, whereas for usual detectors, the matching 

sender and receiver filter are systematically designed, the MEP 

shaping filter here is merely conceptual and practically a hid-

den property. Thus, the ideal detection filter has to be esti-

mated as well. The following will describe the three modules 

of the method, specifically, the detection, filter estimation, 

and calibration modules. 

Detection. The detection process assumes that the optimum 

filter hdet is known and provided by a filter estimation module. 

The detector receives the digitized EMG signals si ideally unfil-

tered except for anti-alias filtering and dc baseline removal. 

We implemented the detection filter as a digital filter since the 

filter tabs can be dynamically updated. The amplitude reading 

of the MEP ai is the peak of the filter output. The temporal po-

sition of the peak provides the latency of the MEP. If the la-

tency is not relevant and relatively independent from the am-

plitude, the MEP amplitude reading can be sampled at a fixed 

position instead of peak detection. The wide bandwidth of de-

tection filter achieves the maximum noise suppression level 

that linear filtering can achieve and does not skew the noise 

distribution:  

𝑎𝑖 = ∫ ℎdet(𝜏)𝑠𝑖(𝑡 − 𝜏
ℝ+

) d𝜏 |
sampling time

Filter estimation. We generate the detection filter by stimulus-

triggered sampling of each MEP. We automatically suppress 

Figure 1.  Assumed equivalent model of the MEP generation and block diagram of the presented detection method. 
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the initial 5 ms of the MEP recording to eliminate any stimu-

lus artifacts, which would correlate well within all samples. 

Dependent on various factors and stimulation targets, the on-

set of MEPs is larger than 15 ms [18, 19]. The time-synchro-

nized recordings are high-pass filtered by hprep, time-inverted, 

and stored in a matrix. After each pulse, the average of that 

ensemble is normalized and forms the newest detection filter. 

In addition, the filter estimation module forms a reference model 

MEP M(t) as the average of all MEPs (see Fig. 2). The SNR 

of both the filter and the model MEP on average grows with 

√n for n MEP curves si(t) and uncorrelated additive Gaussian

noise. Thus, in each iteration i, the detection filter hdet(t) = M(–t)

is updated through a (optionally weighted) sum by

ℎdet,𝑖 = ∑ 𝜆𝑖𝑠𝑖
∗(−𝑡)

𝑖≤𝑛
. 

In the following, the weight factors are used to normalize 

the MEPs to a similar amplitude so that λi = 1/ai. As the filter 

successively improves in the process, the amplitude estimates 

do as well. An iterative process according to λij = (1/ai.)j–1 to 

improve the filter recursively with the entire MEP dataset with 

only a few iterations j converges well without the need for 

numerical relaxation. The iteration runs online during data ac-

quisition and updates the entire dataset after each new MEP. 

Calibration to peak-to-peak detection. Above MEP ampli-

tude reading only provides relative values as it outputs how 

much a new recording matches the reference MEP. However, 

as it is proportional to the amplitude, it can be calibrated to be 

compatible with conventional peak-to-peak measurements with 

the reference MEP. As the SNR of the model MEP is by ap-

proximately √n higher than of an individual MEP, its peak-to-

peak reading far less depends on noise. The individual MEP 

can inherit its peak-to-peak reading and thus also the lower 

noise from the model MEP through the product of the model 

MEP’s peak-to-peak rating weighted by the estimated simi-

larity ai(t) of the individual MEP and the model MEP, which 

is given by the filtered individual MEP by 

�̃�pp = (max
t

(𝑀) − min
t

(𝑀)) ⋅ 𝑎𝑖.

III. EXPERIMENTAL EVALUATION

We evaluated the method experimentally as approved by 

the Duke University Institutional Review Board. The subject 

of the study underwent single-pulse TMS (MagVenture Mag-

Pro X100) over the representation of the first dorsal interos-

seous muscle in the left primary motor cortex. The individual 

pulses were at least 8 s apart and their timing was randomized 

to not follow the subject’s expectation. A focal figure-of-eight 

coil (MagVenture B65) was positioned approximately 45° to 

the longitudinal fissure. MEPs were recorded and sampled 

through surface Ag/AgCl electrodes and an EMG amplifier 

(Biometrics K800 SX230FW) at 5 kHz and 16 bit. MEPs with 

activity of more than 40 µV within a window of 200 ms be-

fore the TMS pulse were excluded from the analysis. The en-

tire dataset contained more than 500 individual MEPs of a 

wide range of stimulation strengths. 

Figure 3 shows two IO curves extracted from the data with 

conventional peak-to-peak MEP amplitude estimation (black 

squares) and the proposed method (red circles) from the same 

recording. For large MEPs, both concur as expected. For 

smaller MEPs, where the SNR drops, the peak-to-peak detec-

tion tends to pick up noise and overestimate the actual MEP. 

At the lower end of the stimulation strength, peak-to-peak de-

tection entirely fails to detect any responses and forms a low-

side plateau at a few microvolts, representing the noise cut-

off. 

In the proposed method, in contrast, the data points reach 

below the conventional peak-to-peak detection limit and, im-

portantly, the trend continues monotonically with the same 

slope as in the upper section. Thus, the MEPs below the con-

ventional peak-to-peak detection limit are not noise but show 

the expected stimulation-strength dependency. The presented 

Figure 3.  IO curves extracted via conventional (black squares) and the more 

sensitive detection method proposed here (red circles). Whereas responses 

with high response amplitudes and therefore high SNR coincide in both meth-
ods, fainter responses tend to be overestimated in the conventional peak-to-

peak metric due to noise and noise misinterpreted as signals forms a low-side 

plateau at small stimulation strength. 
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method reduces the low-side plateau and thus the detection 

limit by a factor of more than 5 (14 dB). 

The 50 µV point, once selected as reference level for the 

motor threshold, is no longer at the onset of first detectable 

MEPs, but is almost in the center of the sigmoid (see Figure 

3). Thus, it turns out that the point that once was considered a 

threshold stimulation strength at a level were first responses 

occur is rather in the middle of the dynamic range of MEPs. 

The filter estimation method extracts the similarities of all 

responses in a learning paradigm to form the filter for the de-

tector. As this approach takes all valid responses into account, 

it assumes that the MEPs do not change substantially, partic-

ularly not with amplitude. We set up a detector that trained two 

filters, a low-amplitude filter trained from and applied to only 

MEPs with less than 100 µV and a high-amplitude filter for the 

others, which entails almost equally sized MEP groups. Fig-

ure 4 depicts the extracted reference MEPs. The here important 

correlation coefficient of the two amounts to 0.970 and the 

low-amplitude cohort appears to show more high-frequency 

content originating from noise and potential granularity ef-

fects associated with the few involved individual motor unit 

activity. Similarly, the reference MEP was stable over time 

(not plotted for space reasons). We grouped the MEPs of the 

75 minutes of the TMS session in ten intervals. The pairwise 

correlation between the individual MEP references was be-

tween 0.984 and 0.996. Thus, the error of the amplitude esti-

mation of an individual MEP in the presented detector, which 

is based on correlation after all, does not exceed 3%, while 

the group error per definition of the filter learning method ap-

proaches zero. Considering the exponential nature of the IO 

curve, errors on that level appear small. 
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