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Modelling of fasting glucose-insulin dynamics from sparse data*

Tinna B. Aradóttir1,2, Dimitri Boiroux2, Henrik Bengtsson1, Niels K. Poulsen2

Abstract— With the fast growth of diabetes prevalence, the
disease is now considered an epidemic. Diabetes is characterized
by elevated glucose levels, that may be treated with insulin.
Tight control of glucose is essential for prevention of compli-
cations and patients’ well-being.
In this paper we model the fasting glucose-insulin dynamics in
type 2 diabetes, aiming at controlling the glucose level. Relevant
clinical data are typically sparse and have a sampling period
much greater than the fast dynamics in the glucose-insulin
dynamics in humans. We adapt a physiological model such
that important slow non-linear dynamics are identifiable and
test the resulting model on deterministic simulated data and
sparse, slow sampled clinical data.

I. INTRODUCTION

Prevalence of diabetes has grown extensively over the last
years, so much that it is now considered an epidemic. The
American Diabetes Association (ADA) predicts that number
of diagnosed patients increases from 425 million today to 693
million by 2045 [1]. Although preventable, type 2 diabetes
counts for approximately 90% of diabetes cases. The ADA
estimates that 20% of health care expenditures in the United
States of America are spent on care for people with diabetes
[2].

In type 2 diabetes, elevated glucose levels are caused by
inadequate production of insulin, reduced response to insulin,
or both. High glucose levels can lead to complications in
the long term such as eye damage, cardiovascular disease
if not treated. However, low glucose levels can cause acute
complications, in worst case coma and death. The sequence
of treatment intensification in type 2 diabetes starts with
lifestyle changes, to oral medication and multiple oral med-
ications, to finally insulin injections [1]. In the current work
we focus on the iterative process of initiating long acting
insulin treatment of type 2 diabetes.

Response and production of insulin is individual, and
therefore finding the right dose of insulin for each patient
is important. In standard care, pre-breakfast self-measured
blood glucose (SMBG) data are used to adjust dose sizes of
long acting insulin. Due to complexity, fear of overdosing,
lack of confidence and other factors, the process of finding
a sufficient insulin dose can take up to years. A study in
the United States of America showed that more than 60%
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of type 2 diabetes patients on insulin treatment do not reach
recommended treatment goals [3].

In the current work we aim to model fasting glucose in
response to long acting insulin. Physiological models of the
glucose-insulin regulatory system in healthy and type 1 and
type 2 diabetes have been published. These models vary
in complexity and purpose, but are most are based on the
Bergman minimal model [4], [5]. Some are designed for 24
hour simulations of glucose during meal intake and injections
of fast acting insulin in type 1 diabetes [6], [7], [8] or type 2
diabetes [9]. In a paper from 2017, the model by Kanderian
et al. [6] was modified to describe fasting glucose in type
2 diabetes in long acting insulin treatment. In this paper
the parameters were assessed rather than found by fitting
to clinical data [10]. Other groups have investigated models
describing progression of type 2 diabetes [11].

In Section II in this paper we outline the problem state-
ment. In Section III, we suggest a physiological model,
which parameters can be estimated from clinical data and
we briefly describe the methods used in the identification
software. In Section IV we describe simulated and clinical
data and finally present the results in Section V.
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Fig. 1. Simulated glucose data (top) given carbohydrates (middle) and long
acting insulin (bottom). The red markers indicate pre-breakfast SMBG. The
dashed lines indicate an approximate target range for fasting glucose.

II. STATEMENT OF THE PROBLEM

The purpose of this work is to create a physiological model
of fasting glucose in response to long acting insulin in type
2 diabetes. The aim is to use this model in dose guidance
control design in insulin treatment. For result interpretation
purposes, such a model should have a physical interpretation.
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Parameter distributions should also be available for in silico
simulations of the diverse type 2 diabetes population. There-
fore, large scale insulin intensification studies are desirable
for parameter estimation.

Parameter estimation in state of the art models of the
glucose-insulin regulatory system requires high frequency
data, around 1-15 minute sampling time. The top panel of
Fig. 1 illustrates in blue a simulation using the model by
Kanderian et al. [6], given inputs in the two lower panels.
The red markers indicate measuring frequency in most large-
scale clinical trials of long acting insulin. Fig. 2 illustrates
how data from an insulin intensification study published by
Zinman et al. [12] with 763 patients, glucose data was not
only registered once per day, but also three out of seven days
of the week.

Excitation of physiological systems is limited due to
safety. In the case of insulin treatment, large doses of insulin
can lead to coma or death, and therefore data below the
desired range glucose values are rare.

Given the above limitations, we aim to modify and un-
derstand which parameters are identifiable in the state of the
art models from the low sampled and sparse clinical data.
Ultimately, such a model should predict fasting glucose in
insulin intensification treatment of the heterogeneous type 2
diabetes patient group.

III. METHODS

A. A physiological model

We base this work on a model originally published by
Kanderian et al. [6] on 24 hour simulations of insulin-
glucose dynamics in type 1 diabetes. In [10], this model was
augmented with endogenous insulin production and used to
simulate fasting glucose in type 2 diabetes. After eliminating
the two meal compartments from the model in [10], the
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Fig. 2. A cut-out from clinical data for one patient in an insulin
intensification trial [12]. The data is sparse with a sampling period of 24
hours.

model is on the form
dx1

dt
=

1
p1

u
p2
− 1

p1
x1 (1a)

dx2

dt
=

1
p1

x1−
1
p1

x2 (1b)

dx3

dt
= p3 p4(x2 + p7x4)− p3x3 (1c)

dx4

dt
=−(p5 + x3)x4 + p6 (1d)

Here, u is exogenous insulin [U/day] (input variable) and
x4 is glucose concentration in plasma [mmol/L] (controlled
variable). x1 and x2 denote subcutaneous and plasma insulin
concentrations [U/L] where insulin moves with time constant
p1 between the compartments [day]. x3 is insulin effect
on glucose [1/day] where p3 is an inverse time constant
describing delay in insulin action following increased insulin
concentration in plasma [1/day]. p2 is a gain describing
insulin clearance [L/day] and p4 is a gain describing insulin
sensitivity [L/U·day]. p5 is an inverse time constant describ-
ing the effect of glucose to eliminate glucose from plasma
[1/day] and p6 is a constant input describing rate of endoge-
nous glucose production [mmol/L·day]. p7 is a parameter
added to describe endogenous insulin production, and could
be interpreted as glucose sensitivity of the insulin producing
cells in the pancreas [U/mmol]. Here insulin production is
assumed to increase linearly with fasting glucose.

B. Model identifiability

In this paper we work with one observable variable (fasting
glucose) and one input variable (insulin). We can therefore
not identify both gains in (1), p2 and p4. Setting x̃1 = x1 p2
[U/day], x̃2 = x2 p2 [U/day], x̃3 = x3 p2/p4 [U/day], p̃7 = p7 p2
[U·L/mmol·day] and rewriting (1) gives

dx̃1

dt
=

1
p1

u− 1
p1

x̃1 (2a)

dx̃2

dt
=

1
p1

x̃1−
1
p1

x̃2 (2b)

dx̃3

dt
= p3(x̃2 + p̃7x4)− p3x̃3 (2c)

dx4

dt
=−(p5 + p̃4x̃3)x4 + p6 (2d)

where the gain p̃4 is a ratio between the two original gains,
p̃4 = p4/p2 [1/U].

TABLE I presents mean (sd) parameter values from [6]
where units are in L, U, days and mmol (respectively instead
of mL and dL,U, min and mg). p1 is roughly assessed based
on knowledge about long acting insulins, and p7 is calculated
such that fasting glucose (for zero input at steady state) in
(1) fulfills x4,ss = x4,0, i.e.

p7 =
1

p4x4,0

(
p6

x4,0
− p5

)
(3)

To investigate identifiability of the time constants in (2),
we use the values in TABLE I. We compare the values
of to the sparse sampling time in the clinical data, i.e.
one measurement per day, three days prior to weekly dose
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change. The typical value for p3 in TABLE I is 15.8 day−1

which corresponds to a time constant of approximately 0.06
days, and we therefore assume we can not estimate it from
the clinical data. The assessed value for p1 is 0.5 days
and would be observable from the daily fasting glucose
measurements following a change in input. Since the sparse
data excludes the first four days following a dose change,
p1 is not observable. The typical value for p5 is 3.31 day−1

which is small compared to the term p̃4x̃3 ≈ 15 day−1 in the
area of interest (x4 ∈ [4,6]). We therefore estimate p̃4, p̃6 as
well as p̃7 from simulated data using (2) using parameters
in Table I and clinical data.

C. Model identification in CTSM-R

CTSM-R, Continuous Time Stochastic Modelling for R, is
an open source software for model identification. CTSM-R
uses a maximum likelihood approach to identify parameters
of an l-dimensional system of stochastic differential equa-
tions on the form

dxt = f (xt ,ut , t,θ)dt +σ(ut , t,θ)dwt (4a)
yk = h(xk,uk, tk,θ)+ ek (4b)

given time series data. Here, θ is the set of parameters we
want to identify, ut is the input at time t, σ(ut , t,θ)2 is the
process noise covariance matrix and wt is a Brownian motion
path. yk is discrete observations and ek is the measurement
error. The likelihood function is a joint probability density,
calculated from state and covariance estimates from an
extended Kalman filter,

L(θ ;YN) =

(
N

∏
k=1

p(yk|Yk−1,θ)

)
p(y0,θ) (5)

Here, Yk = [yk,yk−1, . . . ,y1,y0] is a sequence of measure-
ments yk, and the density p(yk|Yk−1,θ) is found by

p(yk|Yk−1,θ) =
exp
(
− 1

2 εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l (6)

where ŷk|k−1 = E[yk|Yk−1,θ ] is an estimate for the mea-
surements, Rk|k−1 = V [yk|Yk−1,θ ] is the covariance of the
estimate and εk = yk− ŷk|k−1 is the innovation.

TABLE I
PARAMETER VALUES FOR THE MODIFIED MODEL (2). MEAN (SD) FOR p2

THROUGH p6 ARE MEAN VALUES OF WHAT IS PRESENTED IN [6].
PARAMETER VALUES FOR p1 IS ASSESSED AND p7 IS CALCULATED

BASED ON OTHER PARAMETERS AND AN INITIAL STATE, x4(0) = 8
MMOL/L.

Unit Mean (sd)
p1 [day] 0.5
p2 [L/day] 1800 (760)
p3 [1/day] 15.8 (6.2)
p̃4 = p4/p2 [1/U] 0.44 (0.31)
p5 [1/day] 3.31 (3.17)
p6 [mmol/L·day] 96.7 (63.1)
p̃7 = p7 p2 [U·L/mmol·day] 2.52

CTSM-R allows missing observations and estimates pa-
rameters, initial conditions and the measurement and process
noise. Other estimates include standard deviance of the
estimates and the t-statistic. More information about the
methods used in the software is accessible in [13].

IV. DATA

A. Simulated data

Simulated data are generated from the model in (2) using
the mean values of the parameters in TABLE I. We excite
the system with a range of insulin injections such that
fasting glucose levels span clinically relevant glucose con-
centrations; hyperglycemia (> 6 mmol/L), normoglycemia
(< 6 mmol/L and > 3.9 mmol/L) and hypoglycemia (< 3.9
mmol/L). The blue markers in Fig. 3 indicate simulated data
points.

B. Clinical data

In this study we use data from a Phase III clinical trial,
published in [12]. In this study, 773 adult type 2 diabetes
patients initiated insulin degludec treatment on a once daily
treatment regimen. Doses were increased weekly for up to a
year, based on fasting glucose measurements. Fasting glucose
was logged the last three days of the week as illustrated in
Fig. 2. In clinical studies, excitation of the system is bounded
by safety. The International Hypoglycaemia Study Group
defines glucose levels lower than 3.0 mmol/L as clinically
significant hypoglycemia and intensification algorithms used
in clinical care usually control fasting glucose to a target
zone, typically 4.0-5.0 mmol/L or 4.0-6.0 mmol/L [3]. There-
fore we can not expect to see glucose values lower than
around 3.0-4.0 mmol/L.

V. RESULTS

A. Fitting to simulated data

We estimate the set of parameters from simulated data
where parameter values are known. We estimate p̃4, p6 and
p̃7 based on the simulated data in Fig. 3. The red line in
the figure illustrates the one step prediction, and TABLE II
lists the parameter estimates, θ̂ , true values, θ and the initial
parameter value θ0. All parameter estimates are significant
and close to the true values. We therefore conclude that the
three parameters are identifiable, and the objective function
(5) seems to be convex.

TABLE II
PARAMETER ESTIMATES AND TRUE VALUES FOR THE SIMULATED DATA.

θ θ0 θ ∗ θ̂ 95% confidence interval∗ p(> |t|)
p̃4 10 0.44 0.438 [0.436, 0.440] < 0.05
p6 500 96.7 97.1 [96.6, 97.5] < 0.05
p̃7 10 2.52 2.51 [2.508, 2.511] < 0.05
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Fig. 3. Simulated glucose data using (1) (top, blue markers) given insulin
input (lower panel). The red line shows the one step prediction by the model
fit in TABLE II found in CTSM-R.

B. Fitting to clinical data

Fig. 4 illustrates in blue the glucose and insulin data for
one patient in the study published by Zinman et al. [12]. We
use CTSM-R to estimate p̃4, p6 and p̃7 from these data. The
estimates are listed in TABLE III, and the model fit is shown
in red in Fig. 4. The estimated autocorrelation function shows
that there is no significant correlation between residuals up to
a lag of 20, and a sign test for whiteness shows that we can
not reject the null-hypothesis that residuals are continuously
distributed around zero.

TABLE III
PARAMETER ESTIMATES FOR THE CLINICAL DATA.

θ θ̂ 95% confidence interval∗ p(> |t|)
p̃4 1.80 [1.67, 1.94] < 0.05
p6 368 [361, 376] < 0.05
p̃7 1.68 [1.36, 2.00] < 0.05

VI. CONCLUSION

This work suggests that the slow dynamics of the fasting
glucose-insulin system can be described with a modified
version of a model of the fast glucose-insulin dynamics. We
keep a number of the parameters in the four-compartment
model fixed, and thereby identify important parameters
describing non-linear dynamics from sparse slow sampled
clinical data.
Time constants of the system are however not identifiable
due to the sparsity of the data. Design of experiment is an
interesting aspect in this context, with respect to data quality,
system excitation and sampling frequency.
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