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Subspace-Based Suppression of Cortical Stimulation Artifacts

Po. T. Wang1, Colin M. McCrimmon2, Payam Heydari3, An. H. Do4, and Zoran Nenadic1,3

Abstract— Bi-directional brain-computer interfaces for the
restoration of movement and sensation must simultaneously
record neural signals and deliver cortical stimulation. This
poses a challenge since stimulation artifacts can be orders of
magnitude stronger than neural signals. In this article, we pro-
pose a novel subspace-based method for the removal of cortical
electrical stimulation artifacts. We demonstrate the practical
application of our approach on experimentally recorded elec-
troencephalogram data, where artifacts were suppressed by as
much as 30–40 dB. Our method is computationally simple, yet
it achieves superior results to the state-of-the art methods.

I. INTRODUCTION

The ability of brain-computer interfaces (BCIs) to provide
somatosensory feedback by electrical stimulation of the
sensory cortex has been demonstrated in animal [1] and
human [2] studies. Ideally, these bi-directional BCIs should
simultaneously record neural signals and deliver cortical
stimulation [3]. This poses a significant challenge due to
stimulation voltages being orders of magnitude stronger
than neural potentials. Specifically, these stimulation artifacts
may severely interfere with neural signals and even drive
amplifiers into a saturation regime. Current bi-directional
BCIs circumvent this problem by temporally multiplexing
recording and stimulation [1], [2], which may be subopti-
mal for applications that require continuous somatosensory
feedback and decoding. This strategy also constrains the BCI
decoder, which may compromise the overall BCI function.

An alternative approach to this problem is to optimize
the parameters critical for artifact propagation and avoid
the saturation of the BCI’s analog front-end. Based on vol-
ume conduction theory, electrical stimulation is expected to
produce dipole-like potential distributions. Thus, the relative
distance and orientation of stimulating and recording elec-
trodes, the tissue conductivity, and the choice of a reference
electrode significantly affect artifact propagation [3]. Factors
such as the stimulation frequency, amplitude and waveform
can also be optimized. Assuming amplifiers are not saturated,
an additional level of artifact suppression can be achieved by
utilizing array signal processing techniques [4]. Typically,
these methods decompose measurements into a signal and
noise/interference subspace, followed by the suppression
of unwanted components. In the context of neural signal
processing, independent component analysis (ICA) is the
most popular representative of these techniques [5].
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In this article we propose a straightforward method for
the removal of stimulation artifacts from recorded neural
data. Similar to other subspace-based techniques, our method
yields a spatial filter that can be trained offline and imple-
mented efficiently in real time. Our approach takes advantage
of stimulation artifacts being much stronger than neural
signals. It also exploits strong spatial correlations that are
generally present in neural signals measured by an array of
sensors [6]. The performance of our method was tested on
experimentally collected electroencephalogram (EEG) data,
recorded in the presence of a strong electrical interference.
Our method produces results that are competitive, if not
superior, to the state-of-the-art ICA-based artifact removal
techniques, yet at a significantly lower computational cost
and with a much simpler implementation.

II. METHODS

A. Null Projection for Artifact Suppression

In the presence of stimulation dipoles, the measurements
from an array of n sensors can be modeled as:

X = ADSD + ASSS + N (1)

where X ∈ Rn×t, t is the number of time samples (t� n),
SD ∈ Rd×t are the time-dependent moment magnitudes of d
equivalent dipoles (d < n), SS ∈ Rs×t are the activities of s
neural sources, and N ∈ Rn×t is background noise [7]. The
columns of AD ∈ Rn×d and AS ∈ Rn×s are the lead field
vectors (LFVs) of the stimulation dipoles and neural sources,
respectively. In the BCI context, SS represents task-related
neural activity, whereas N subsumes background neural
activity, biological artifacts, and electronic/sensor noise [8].

If stimulation dipoles are much stronger than neural
sources and noise in (1), most of the energy in X will be
confined to a d-dimensional subspace spanned by the LFVs
in AD. The stimulation artifacts can then be removed by a
null projection (NP) procedure [7], whereby X is projected
to the orthogonal complement of this dipole subspace. While
reasonable, this strategy may produce suboptimal results due
to the stimulation-free response ASSS +N exhibiting strong
spatial correlations. These correlations, primarily caused by
the physical proximity of individual sensors and correlated
background, may hinder the accurate identification of the
dipole subspace.

To address the above challenge, we employ a dual-
condition experimental design [9]. Specifically, in addition
to measurements in the presence of a stimulator, referred to
as active state data, we collect data while the stimulator is
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turned off (control state). Expressed mathematically:

XA = ADSD + ASSS + NA (2)
XC = ASSS + NC (3)

where the statistical properties of noise in the active and
control state are not necessarily the same.

To improve the signal-to-noise ratio (SNR) and accu-
racy of a dipole subspace estimate [10], we calculate the
prewhitening matrix from the control state data: Σ

− 1
2

C =

VT
CΛ
− 1

2

C VC . Here, ΣC ∈ Rn×n is the covariance of XC ,
and VC ∈ Rn×n and ΛC ∈ Rn×n are its eigenvector and
eigenvalue matrix, respectively. Note that XC is generally a
full-rank matrix, and so Σ

− 1
2

C is well defined. Subsequently,
we de-mean and prewhiten the active state data:

X′A = Σ
− 1

2

C

(
XA − µA1T) (4)

where µA = 1
tA

∑tA
i=1 XA(i) ∈ Rn, tA is the number of

samples in the active state, and the elements of 1 ∈ RtA are
all 1. Since this operation nearly whitens the stimulation-free
response in (2), the identification of the dipole subspace is
readily achieved using the singular value decomposition [7]:

X′A = UAΣAVT
A =

[
Ud Uc

d

] [ Σd 0 0
0 Σc

d 0

]
VT

A

The dipole subspace is spanned by the columns of Ud ∈
Rn×d, which are the left singular vectors of X′A correspond-
ing to its largest d singular values (the diagonal of Σd). Its
orthogonal complement is spanned by the remaining n − d
left singular eigenvectors (columns of Uc

d). When X′A is
projected onto this subspace, the effect of the stimulation
dipole will be minimized. Formally, let this null projection
be represented by a matrix H = Uc

d, then the projected
data HTX′A will be largely free of stimulation artifacts.
Reconstructing this projection in the original space followed
by “coloring” and restoring the mean value yields:

Xclean
A = Σ

1
2

CHHTX′A + µA1T (5)

The coloring matrix, Σ
1
2

C , is simply the inverse of the
prewhitening matrix. We will refer to this method as
prewhitening plus null projection (PW+NP) algorithm.

B. Experimental Data Collection

The study was approved by the Institutional Review Board
at the University of California Irvine. An able-body subject
was fitted with a 20-electrode EEG cap (Compumedics USA,
Charlotte, NC). Conductive gel was applied and the scalp was
abraded until the 30-Hz impedances were lowered to <10
kΩ. The signals were referenced to a frontal electrode (see
Fig. 1), and were amplified (×5,000) and band-pass filtered
(1–35 Hz) using 19 single-channel bioamplifiers (EEG100C,
Biopac Systems, Goleta, CA). The signals were digitized
(4,000 Hz, 16 bits) and recorded by a data acquisition
system (MP150, Biopac Systems). The system’s auxiliary
analog inputs were used to synchronize the recorded EEG
and experimental cues, controlled by custom-made Matlab
(Mathworks, Natick, MA) scripts.

Prior to mounting the EEG cap, three individual electrodes
were affixed to the scalp with an adhesive cream (EC2,
Natus Neurology, Middleton, WI), in the vicinity of the
central-midline electrode Cz (Fig. 1). They were connected
(two at a time) to a hand-held, battery-powered impedance
monitor (EIM105, General Devices, Ridgefield, NJ). The
monitor produces a 30-Hz sinusoidal artifact that is much
stronger than EEG, and therefore acts like a surrogate for a
cortical stimulator. The electrodes were connected to mimic
both “horizontal” and “vertical” dipole configurations. The
stimulator signal was split by a cable, and its copy was
acquired by the MP150 system at the same rate as EEG.

Auditory cues instructed the subject to alternate between
keeping his eyes open and closed for 5 min total. The
duration of each eyes-open and eyes-closed epoch was 15
sec (20 epochs total). This experiment was performed under
the no stimulation, horizontal dipole, and vertical dipole
conditions. All the data were saved for subsequent analyses.

C. Analysis

1) PW + NP: The no-stimulation EEG data were used as
a control state and the prewhitening matrix was calculated as
explained in Section II-A. The EEG data from the horizontal-
dipole condition (active state) were then processed according
to (4–5). In the presence of a single stimulator, the theoretical
dimension of the dipole subspace is d = 1. Practically,
d may be higher due imperfections in the model (2). To
determine d, we note that prewhitening renders the non-
dipole components of X′A nearly white, and so the smallest
n− d eigenvalues of its covariance matrix are ≈1. Utilizing
the connection between singular values and eigenvalues, it
follows that the smallest n−d singular values of X′A satisfy
σ ≈

√
tA − 1. To account for noise in the singular value

distribution, we determined d by counting the number of
singular values that satisfy σ > 2

√
tA − 1. More elaborate

techniques for determining d can be found in [11]. The
null projection matrix H and Σ

1
2

C were then calculated as
explained in Section II-A, and the artifact-free data were
obtained by (5). The above procedure was then repeated for
the vertical-dipole data.

2) Performance Metrics: The quality of artifact sup-
pression algorithms (PW+NP and ICA) was quantified by
measuring the SNR and signal-to-interference ratio (SIR).
The SNR was defined as a deflection coefficient [12]:

SNR(f) =

√
(µc(f)− µo(f))2

0.5(σ2
c (f) + σ2

o (f))
, f ∈ [8, 12] Hz

where µc(f) and µo(f) are the power spectral densities
(PSDs) of EEG data averaged across the eyes-closed and
eyes-open epochs, respectively, and σc(f) and σo(f) are their
corresponding standard deviations. The 8–12 Hz band was
chosen since closing the eyes is known to increase the power
of the occipital α wave over these frequencies [13]. Thus,
we formally designate EEG under eyes-closed and eyes-open
conditions as signal and noise, respectively. The overall SNR
was calculated by averaging SNR(f) over the 8–12 Hz band.
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The SIR was defined as:

SIR =

max
8≤f≤12

µc(f)

max
29≤f≤31

µc(f)
(6)

with interference being a narrow-band signal around 30 Hz
due to the stimulator’s sinusoidal waveform. The SIR and
SNR were calculated on a per channel basis. For visualiza-
tion purposes they were expressed in decibels (10 log10).

3) ICA: To compare the performance of the PW+NP
algorithm to the state-of-the-art, the FastICA algorithm [14]
was employed. Matlab scripts were downloaded from the
FastICA web site, and the algorithm was executed with
default parameters. The independent components (ICs) cor-
responding to the horizontal and vertical dipole data were
calculated and stored for subsequent analysis, together with
the mixing and unmixing matrices. The ICs were visualized
in order identify the presence of stimulation artifacts, and
this process was aided by evaluating their SIRs. Independent
components deemed to contain the stimulation artifacts were
then discarded by the backprojection method [5].

III. RESULTS AND DISCUSSION

The impedance meter produced strong artifacts, primarily
around 30 Hz. Fig. 1 shows the contour-plot distribution
of EEG data peaks calculated for both the horizontal and
vertical dipole conditions. Briefly, the positive peaks of the
stimulator signal were detected and multi-channel EEG data
were extracted at these time points. The contours were
then generated by averaging these peak values over ∼9,000
stimulation cycles. The artifacts exhibited a dipole-like dis-
tribution, and were an order of magnitude stronger than
the α wave. Stronger artifacts could have been generated,
however the impedances of the stimulating electrodes were
kept intentionally high in order to prevent the saturation
of bioamplifiers. The mismatch between the location of the
stimulating electrodes and the maximum/minimum contours
is caused by the low channel density and spatial interpolation
artifacts.

Fig. 1. The spatial distribution of stimulation artifacts represented by
contours. Left: horizontal dipole. Right: vertical dipole. The approximate
locations of the stimulating electrodes are marked by the open circles, and
the location of the reference electrode is shown as the black dot.

Additional analysis showed that the signals on different
channels did not peak at the same time, and that these

phase shifts, calculated with respect to the stimulator signal,
varied between 0.2 and 8.9 msec across the channels and
experimental conditions. These phase differences were likely
caused by the impedances at the electrode-scalp interface.

The estimated dipole subspace dimension was d̂ = 3 for
both the horizontal and vertical dipole data. These estimates
were corroborated by decomposing the active state data via
C = UT

AX′A ∈ Rn×tA , and visualizing the PSDs of these
components (the rows of C). The top three components
exhibited a significant peak at 30 Hz, suggesting that they
resided in the dipole subspace, Ud. The remaining com-
ponents had a much smaller peak at this frequency. The
departure of d̂ from the theoretical value, d = 1, is consistent
with the observed phase shifts. Since a single LFV in the
model (2) cannot account for phase differences, the rank
of AD is inflated and phase-shifted artifacts are treated as
additional dipoles. Upon cleaning the data according to (5),
the SNR and SIR values were calculated. The results are
shown on the top of Figs. 2 and 3 for the horizontal and
vertical dipole data, respectively. The original SIRs and
SNRs (prior to processing) are also shown.

Fig. 2. SNRs and SIRs across channels (color coded) before (◦) and after
(M) processing the horizontal-dipole data. Top: PW+NP. Bottom: ICA. The
crosses are the means as defined in Table I.

Upon execution of ICA on the horizontal and vertical
dipole data, 16 and 17 ICs converged respectively. The ICs
were analyzed and those that showed a dominant peak at 30
Hz were identified (IC 8 for horizontal and ICs 5 and 16
for vertical dipole). When EEG signals were reconstructed
without these ICs, the calculated SIRs were not competitive
to those obtained by PW+NP, especially for the vertical
dipole data (compare the 2nd and 3rd column of Table I).
The ICs were then sorted according to their SIRs, and a
combinatorial search was performed by discarding low-SIR
components until the reconstructed EEG achieved optimal
SIR values. This resulted in the exclusion of an additional
IC for the horizontal dipole data, and 3 additional ICs for the
vertical dipole data. These values are shown on the bottom
of Figs. 2 and 3, and their summary statistics are denoted by
ICAopt in Table I.

Figs. 2 and 3 show that both PW+NP and ICA sub-
stantially improved the SIR without compromising SNR. In
fact the mean SNR improved slightly, but these gains were
not statistically significant. On the other hand, the gains in
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Fig. 3. Equivalent of Fig. 2 for the vertical dipole data.

SIR were statistically significant for both PW+NP and ICA
and for both dipole conditions (Kolmogorov-Smirnov test,
p<10−8). The figures also show that PW+NP outperformed
ICA in rejecting the artifacts, especially under the vertical-
dipole condition. While these gains were not statistically
significant due to an excessively large variance, these dif-
ferences were not negligible. For the horizontal dipole, the
mean SIR after PW+NP was 1.31 dB (35%) higher than that
of ICA. For the vertical dipole, the PW+NP SIR was 2.96 dB
(98%) higher than its ICA counterpart. With respect to the
original data, PW+NP achieved overall SIR gains of 30.57
dB (horizontal dipole) and 39.29 dB (vertical dipole).

TABLE I
THE MEAN SNR AND SIR FOR THE HORIZONTAL (TOP) AND VERTICAL

(BOTTOM) DIPOLE DATA. THE STATISTICS WERE CALCULATED OVER

CHANNELS AND TRANSFORMED INTO DECIBELS BY 10 log10 . THE

NUMBERS IN PARENTHESES SHOW THE EXCLUDED ICS.

Horizontal Original PW+NP ICA (8) ICAopt

SIR dB Mean -12.63 17.94 15.90 16.63

SNR dB Mean 1.74 1.96 2.69 2.70

Vertical Original PW+NP ICA (5,16) ICAopt

SIR dB Mean -21.28 18.01 10.42 15.05

SNR dB Mean 2.03 2.27 2.80 3.00

The advantages of our method are several-fold. First,
the stimulation dipole identification is straightforward with
theoretically justified thresholds (see Section II-C). To be
competitive, ICA required a combinatorial search over its
low-SIR components. For generalizable results, this dipole
identification must be implemented within a cross-validation
framework, which is computationally demanding in ICA, but
very simple in PW+NP using standard linear algebra tools. In
addition, our method produces superior artifact suppression
results. This is not surprising since phase-shifted artifacts
cannot be captured by a single IC, yet they are not likely
to be fully independent. The PW+NP method handles this
problem by inflating the dipole subspace. On the other hand,
ICA must fit these residual artifacts into other ICs, thus
remixing them with other sources, including neural ones.
PW+NP requires additional data (control state), but this is not

a problem since the stimulator can easily be turned off. When
we ran ICA on the concatenation of control and active state
data, its performance did not improve. Thus, the advantage
of PW+NP cannot be attributed to it having more data at its
disposal.

With respect to our method, ICA achieved slightly superior
SNRs, although these gains were not statistically significant.
However, the SNR was evaluated to merely demonstrate that
artifact suppression did not compromise the signal quality. To
maximize the SNR, a more appropriate supervised learning
techniques could be used [15].

IV. CONCLUSION

Our study demonstrates that a straightforward array signal
processing method can achieve 30–40 dB of artifact sup-
pression. In combination with artifact mitigation strategies at
the front-end, this method could yield usable neural signals
and, in turn, enable simultaneous recording and stimulation
in bi-directional BCIs. Our future plans include testing of
the PW+NP algorithm on additional subjects as well as with
other types of neural data.
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