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Abstract— Sleep monitoring provides valuable insights into
the general health of an individual and helps in the diagnostic
of sleep-derived illnesses. Polysomnography, is considered the
gold standard for such task. However, it is very unwieldy and
therefore not suitable for long-term analysis. Here, we present
a non-intrusive wearable system that, by using photoplethys-
mography, it can estimate beat-to-beat intervals, pulse rate,
and breathing rate reliably during the night. The performance
of the proposed approach was evaluated empirically in the
Department of Psychology at the University of Fribourg. Each
participant was wearing two smart-bracelets from Ava as
well as a complete polysomnographic setup as reference. The
resulting mean absolute errors are 17.4 ms (MAPE 1.8%) for
the beat-to-beat intervals, 0.13 beats-per-minute (MAPE 0.20%)
for the pulse rate, and 0.9 breaths-per-minute (MAPE 6.7%) for
the breath rate.

I. INTRODUCTION

Sleep is a natural mechanism that allows the restoration
of cognitive and physical abilities in humans and most mam-
mals. The alteration of normal sleep patterns is an indication
of an underlying medical condition or of a degradation
of sleep itself, and is therefore a significant indicator of
health status [1]. Additionally, sleep is a privileged period
during which short or long oscillations of physiological
regulation (e.g., circadian rhythms [2], menstrual cycles [3],
physical training [4]) can be analyzed. At night, exogenous
perturbations are limited and thus most of the measured
physiological signals are less affected by the environment,
allowing analysis of the underlying regulation rhythms.

The gold standard for sleep analysis is the polysomno-
graph (PSG) [5]. The typical setup for polysomnographic
measurements involves a plurality of sensors, such as an
electrocardiograph (ECG), an electromyograph (EMG), and
an electrooculograph (EOG), among others. However, its
obtrusiveness makes it unsuitable for long-term sleep studies.
Recently it has been shown that using an optical wrist-worn
sensor allows to obtain reliable estimates of cardiac activity
(e.g., beat-to-beat intervals) with minimal obtrusiveness [6],
[7]. Using that information, it is possible to derive several key
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features such as heart rate, heart rate variability (HRV) [8],
sleep phases [9], and respiration rate during sleep [10].

The current paper presents the performance in terms of
accuracy of the wrist-worn device at the following tasks: (1)
detecting beat-to-beat intervals, (2) estimating heart rate, and
(3) estimating respiration rate. The overall structure of the
underlying algorithm is provided as well as the key modules
that determine the limits of the system.

Fig. 1. Ava smart-bracelet with a multi-wavelength (green and infra-red)
photoplethysmographic optical sensor.

II. MATERIALS

A. Sensors

The test data was collected using the commercial smart-
bracelet developed by Ava1 (see Figure 1). This system
acquires synchronous data from a three-axis accelerometer
and a photoplethysmographic (PPG) sensor on the green
and infra-red wavelengths. The sampling frequency for these
signals was 25 Hz. This frequency has been shown to be
sufficient to obtain reliable estimates of the beat-to-beat
intervals [7]. The raw signals were processed within the

1https://www.avawomen.com
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device to extract beat-to-beat intervals and the average power
of the norm of the high-pass filtered acceleration signal. The
resulting features are stored on the bracelet and transmitted
to a backend server at the end of the night for further analysis
and storage.

The reference was composed of a PSG system containing
6 EEG signals (F3, F4, C3, C4, O1, O2), left and right EOG
signals, a 1-lead ECG signal, respiration signal and EMG sig-
nal. The EEG system that was used was the BrainVision DC
Amplifier with GRASS Gold Electrodes. All signals were
synchronous and uniformly sampled at a nominal frequency
of 200 Hz. The reference for the beat-to-beat intervals was
extracted from ECG and the reference for the breathing rate
was recorded using a chest strap.

B. Data acquisition

The data was collected at the sleep lab of the Department
of Psychology of the University of Fribourg. Seven partici-
pants, all female, spent four nights each in the lab. In Table I,
we show the subject’s statistics. The average interval between
consecutive recordings of a participant was about one week.
Each participant wore every night two smart-bracelets (one
on each wrist), which added up to 56 recordings. As a
exclusion criteria during the study, it was stipulated that
the wrist sensors should be in contact with the skin at all
times, and the reference signals provided by the ECG and the
chest strap should be of enough quality to obtain a reliable
reference. Thirty-one full-night signals were available after
discarding the recordings that did not meet the exclusion
criteria.

TABLE I
STATISTICS OF THE SUBJECT’S PARAMETERS RECRUITED BY THE

DEPARTMENT OF PSYCHOLOGY OF THE UNIVERSITY OF FRIBOURG.

Age (yrs) Weight (kg) Height (m) BMI (kg/m2)
Mean 21.14 57.21 1.69 20.03
STD 1.25 7.67 0.05 1.94

C. Data processing

The proposed algorithm focuses on the estimation of beat-
to-beat intervals, heart rate, and breathing rate, by combining
the PPG measurements and the acceleration signals. This
algorithm can be divided into two main parts: the first part
is performed directly on the device, and the second part
is run on a server. The motivation behind this decoupling
is to balance the amount of computation that is performed
on the bracelet, optimizing for battery life and fast data
transfer between bracelet and server. The general outline of
the algorithm is shown in Figure 2.

The acceleration signals are used to detect time periods
where the optical measurements are corrupted by motion
artifacts. In order to find a motion indicator, the norm of
the 3D acceleration is first computed, and after the constant
gravity component is removed from the norm, the power of
the resulting signal is estimated.

Device
 (embedded algorithm)PPG

Beat-to-beat
 detection

3D Accelerations

Computation of the norm
 of the acceleration

Outlier detection
 and correction

Estimation of the mean power
 after high-pass filter.

CloudHRV spectrum estimation

Beat-to-beat
 intervals

Mean over 10 beats Respiration peak 
 tracking

Breathing rateHeart rate

Fig. 2. Schematic representation of the proposed system. The algorithm
is split between a low-power device and a data cluster in order to balance
the overall computational load and memory footprint.

The beat-to-beat intervals are calculated by computing the
interval of time between consecutive maxima of the first-
order derivative of the PPG signal. Physiological constraints,
such as the refractory period of the heart, are used to
reject false detections that would result in erroneously short
intervals. The position of the maxima is determined by
fitting a second order polynomial spline, using the values
of the maxima sample and the two surrounding samples as
interpolation values.
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Fig. 3. Typical result for the estimation of the beat-to-beat intervals. PSG
reference displayed in dashed black and the described approach in solid red.

The beat-to-beat intervals that are corrupted by movement



or that are not physiologically plausible are corrected using
a linear interpolation to replace the corrupted values.

The heart rate is obtained by averaging the inverse of ten
consecutive corrected beat-to-beat intervals.
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Fig. 4. Typical result for the estimation of the breathing rate during a
full night. In the horizontal axis, the hour of the night is represented. The
reference values, from the PSG, are shown in solid black and the estimates
of the proposed system are shown in dashed red.

The resulting corrected series of beat-to-beat intervals
is then uniformly resampled at a frequency of 2 Hz and
band-pass filtered between 0.04 and 0.5 Hz. This frequency
band corresponds to the control of the autonomic nervous
system (ANS) over the heart [8]. The HRV spectrum is
obtained by applying an auto-regressive (AR) model [11] of
20th order. The parameters of the AR model are iteratively
estimated using a normalized a least mean square algorithm
(NLMS) [11]. The resulting HRV spectrum is used to track
the peaks in the respiratory frequency band (0.1 to 0.5 Hz).
This band corresponds to respiratory rates between six and
thirty breaths per minute, which is the normal range for
respiratory rates during the night [12]. The breathing rate
is then directly estimated from this peaks frequency. The
breathing rate is estimated recursively from the current
estimation using the ratio of the power of the respiration peak
over the total power in the band as a learning gain. Figure 4
gives an example of the resulting estimation of the breathing
rate (solid red line) compared to the reference value obtained
from the PSG’s respiration sensor (dashed black line).

D. Performance evaluation

To determine the accuracy of beat-to-beat intervals, heart
rate, and breathing rate estimates from the wrist-worn device,
we selected two different performance measures: the mean
absolute error (MAE) and the mean absolute percentage error
(MAPE).

As the performance evaluation requires a perfect alignment
of the test and reference time series, we use a dynamic time
warping algorithm (DTW) [13] to align the respiratory peaks

in both datasets. The MAE and MAPE are estimated on the
aligned series after the removal of the segments where the
reference was corrupted or missing.

The heart rate reference signal is obtained by averaging
the inverse of the beat-to-beat aligned intervals over ten beats
and the MAE and MAPE is then computed.

To estimate breathing rate accuracy, we interpolated the
estimated breathing rate at the times of the reference respi-
ration signal obtained from the PSG setup. The MAE and
MAPE are then directly computed from the two series.

III. RESULTS AND DISCUSSION

The results obtained by the proposed approach are pre-
sented in Table II. For each evaluation of the performances
the minimal (Min), the 25% quantile (Q25), the median, the
75% quantile (Q75), the maximal (Max) and the mean scores
are are presented. The different estimations are abbreviated
by RR for beat-to-beat interval (in reference to the distance
between R peaks within the ECG), HR for heart rate, and
BR for breathing rate.

TABLE II
PERFORMANCE EVALUATION FOR BEAT-TO-BEAT INTERVAL (RR),

HEART RATE (HR), AND BREATHING RATE (BR).

Min Q25 Median Q75 Max Mean
RR MAE [ms] 8.1 16.5 18.1 19.8 24. 5 17.4
RR MAPE [%] 0.7 1.5 1.8 2.0 2.4 1.8
HR MAE [min−1] 0.06 0.10 0.12 0.14 0.23 0.13
HR MAPE [%] 0.10 0.16 0.19 0.22 0.41 0.20
BR MAE [min−1] 0.3 0.5 0.8 1.2 2.5 0.9
BR MAPE [%] 2.1 3.8 5.5 8.7 18.2 6.7

The results obtained for the estimation of the heart rate
exhibit a small error (typ. MAE is less than one beat-
per-minute) for all the signals. It has to be accounted that
the segments where the reference is not reliable have been
discarded.

The beat-to-beat intervals exhibit a MAE between 8 to
24 ms. Such error is acceptable for some applications, such
as breathing rate estimates, but can be a limiting factor for
other features (e.g., accurate estimation of the power in the
HF, LF and VLF spectral bands of HRV spectrum). This
error is dependent on different factors. First, the beat-to-
beat intervals measured on the wrist are not the exactly
identical to the beat-to-beat intervals extracted from the ECG.
Indeed the pressure pulse, initiated by the heart contraction,
is propagated through the arterial system and undergoes
modifications of its shape that affects the accuracy of the
arrival time detection. Such distortions are unavoidable and
represent a limitation of HRV estimation using a wrist-based
sensor. The second factor is the detection algorithm that is
embedded in the device. It has to fulfill some constraints
about memory and computational complexity, which results
in suboptimal detection of the pressure pulses. Improving
pulse detection is possible but was out of the scope of
this study. Finally, the measured optical signal is strongly
sensitive to motion artifacts that can, even for very small
movements, affect the accuracy of the pulse wave detection.
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Fig. 5. Histogram of the error of the beat-to-beat detection. The distribution
resembles a Laplacian distribution with a mean of 0.08 ms and a standard
deviation of 23.4 ms)

The results obtained for heart rate estimates exhibit a small
error (typ. MAE is less than one beat-per-minute) for all
the signals. It should be noted that segments with unreliable
reference signals, mostly due motion artefacts, have been
discarded. The real value of the MAE for the proposed
method is therefore slightly underestimated because the
estimate of the heart rate is also affected by motion artefacts.

The results for the breathing rate show that around 75% of
the signals have a MAE of less than one breath-per-minute.
The mean error for the whole dataset is also less than one
breath-per-minute. It has to be highlighted that the breathing
rate estimates, based on indirect estimation through HRV,
require that the participant is in resting condition and that the
beat-to-beat series is not strongly corrupted. At the beginning
and at the end of the night the person was awake and these
two conditions were no longer satisfied, resulting in a much
larger error during these time intervals.

IV. CONCLUSION

This study has shown that the measurement of beat-
to-beat intervals during sleep permit obtaining a reliable
estimation of breathing rate. This measurement is made
possible because the participant is at rest, allowing a reliable
breathing rate detection due to the quasi-absence of motion,
and is not applicable to everyday life. For the same reason
the heart rate estimation is also accurate. The extraction of
beat-to-beat intervals is satisfactory for some applications,
but wrist measurements are only an approximation of beat-
to-beat intervals obtained from ECG measurements, currently
the gold standard for cardiac variability analysis.

It should also be noted that the indirect estimation of
the respiration rate from the cardiac variability requires that
the ANS driven modulation of the beat-to-beat intervals
is normal. For unhealthy or elderly people, whose cardiac
function or nervous control of the heart is affected, the pro-

posed approach should be investigated further in a dedicated
clinical study.

The algorithms presented in this paper are under develop-
ment, and in future versions we plan to add supplementary
features extracted from the PPG, such as the modulation of
amplitude of the observed pulses in the optical signal and
the modulation of the baseline. These signal contain relevant
information about the breathing rate and the control of the
autonomic nervous system, which can then be used to extract
relevant information about sleep.
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[6] P. Renevey, J. Solà, P. Theurillat, M. Bertschi, J. Krauss, D. Andries,
and C. Sartori, “Validation of a wrist monitor for accurate estimation
of RR intervals during sleep,” in Proceedings of the 35th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (IEEE-EMBS’13), July 3-7, 2013, pp. 5493–5496.

[7] J. Parak, A. Tarniceriu, P. Renevey, M. Bertschi, R. Delgado-Gonzalo,
and I. Korhonen, “Evaluation of the beat-to-beat detection accuracy
of PulseOn wearable optical heart rate monitor,” in Proceedings of
the 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (IEEE-EMBS’15), August 25-29, 2015,
pp. 8099–8102.

[8] Task Force of The European Society of Cardiology and The North
American Society of Pacing and Electrophysiology, “Heart rate vari-
ability standards of measurement, physiological interpretation, and
clinical use,” Circulation, no. 93, Mar. 1996.

[9] P. Renevey, R. Delgado-Gonzalo, A. Lemkaddem, M. Proença,
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