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Abstract

Alzheimer’s disease (AD), a progressive brain disorder, is the most common neurodegenerative 

disease in older adults. There is a need for brain structural magnetic resonance imaging (MRI) 

biomarkers to help assess AD progression and intervention effects. Prior research showed that 

surface based brain imaging features hold great promise as efficient AD biomarkers. However, the 

complex geometry of cortical surfaces poses a major challenge to defining such a feature that is 

sensitive in qualification, robust in analysis, and intuitive in visualization. Here we propose a novel 

isometry invariant shape descriptor for brain morphometry analysis. First, we calculate a global 

area-preserving mapping from cortical surface to the unit sphere. Based on the mapping, the 

Beltrami coefficient shape descriptor is calculated. An analysis of average shape descriptors 

reveals that our detected features are consistent with some previous AD studies where medial 

temporal lobe volume was identified as an important AD imaging biomarker. We further apply a 

novel patch-based spherical sparse coding scheme for feature dimension reduction. Later, a 

support vector machine (SVM) classifier is applied to discriminate 135 amyloid-beta positive 

persons with the clinical diagnosis of Mild Cognitive Impairment (MCI) from 248 amyloid-beta-

negative normal control subjects. The 5-folder cross-validation accuracy is about 81.82% on the 

dataset, outperforming some traditional, Freesurfer based, brain surface features. The results show 

that our shape descriptor is effective in distinguishing dementia due to AD from age-matched 

normal aging individuals. Our isometry invariant shape descriptors may provide a unique and 

intuitive way to inspect cortical surface and its morphometry changes.

I. INTRODUCTION

Alzheimer’s disease (AD), a highly prevalent and irreversible neurological degeneration, is a 

major health concern. According to an estimation from the Alzheimer’s Association [1], 5.5 

million Americans are currently living with Alzheimer’s dementia and that number may 

reach more than 13 million by the year of 2050. Although the precise mechanism of AD 

development is not fully understood, AD progression is reflected in brain atrophy. It is 

hoped that treatment could have great benefit if started during the earliest stages of AD [2]. 

Because brain shape analysis techniques may identify subtle shape alterations, they may 

HHS Public Access
Author manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 November 
19.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2018 July ; 2018: 427–4631. doi:10.1109/EMBC.2018.8513129.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have great potential for early detection of AD [3], as well as tracking AD progression [4], 

and the impact of therapeutic interventions [5]. With the development of magnetic resonance 

imaging (MRI), we can easily extract several brain shape features that measure AD’s 

influence on brains structure, including the features of whole brain [6], temporal lobe 

volumes [7], hippocampus [8], cortical thickness [9].

Although various brain volume-based feature approaches [10], [11] were developed for brain 

volume image analysis, prior research [12], [13] has demonstrated that surface-based brain 

mapping may offer advantages over volume-based brain mapping work. Indeed, prominent 

surface-based analysis approaches, such as surface conformal mapping [14], isometry 

invariance analysis (e.g., surface spectral distances [15], and spherical harmonic 

analysis[16]), have been developed and demonstrated their greater success.

Among the surface approaches, isometry analysis studies, are of great interest as the results 

are invariant under isometric transformation of cortical surfaces. Unfortunately, due to the 

complicated geometry of cortical surfaces, currently available isometry analysis studies [17], 

[18] often fail to reach one of the desired requirements: sensitive in morphometry 

quantification, robust in abnormality detection, and intuitive in feature visualization.

Here we propose a novel shape descriptor, based on the area-preserving mapping [19] and 

Beltrami coefficients, to complement current isometric invariant methods. The area-

preserving mapping, which preserves the local area of the surface, provides a globally 

optimal diffeomorphic mapping from cortical surface to the unit sphere. The mapping result 

is invariant under isometric transformation, i.e. rotate, scale, and transform. The Beltrami 

coefficients depict the anisotropicity of the elastic deformation of the mapping and can 

potentially be used as a shape signature to measure brain morphometry changes.

In our experiments, we apply our shape descriptors to 135 amyloid-positive AD (Aβ+) 

patients and 248 healthy control (Aβ−) subjects. The group difference results are consistent 

with some prior AD research [12]. We further apply a novel patch-based spherical sparse 

coding algorithm for feature dimension reduction. After that, a Support Vector Machine 

(SVM) classifier is used to classify these two groups. We see the 5-folder cross-validation 

accuracy rate for distinguishing AD and CTL subjects is about 81.82%, outperforming some 

traditional brain surface features. Our experimental results demonstrate that our shape 

descriptors may then be applied as potential imaging biomarkers for neurodegenerative 

disease research.

II. Method

A. Basic Ideas

Let S be a genus zero cortical surface, represented by the triangular mesh M = (V,E,T). Our 

goal is to find a discrete map to the unit sphere f : M → 2|R=1, such that the area adjacent 

to each vertex vi ∈ V is conserved. It makes the problem tractable that f can be decomposed 

as three discrete mapping functions, conformal map to a planar domain c, area-preserving 

adjustment a on the planar domain, and the inverse stereo-graphic projection s−1 (see Fig. 1). 

Mathematical details for each of these mapping function appear in the next sections.
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B. Conformal map to planar domain

We first find a c : M → ℂ which maps the brain surface M onto a planar domain. Such c 
can be found in two steps.

First, conformally map cortical surface to the unit sphere via Spherical Harmonic Mapping. 

We refer the reader to the paper [20] for a full description of this approach.

Second, punch a tiny hole around the north-pole of sphere and stereo-graphically project the 

unit sphere mapping to complex plane ℂ. Let point v = (x, y, z) on the sphere and (u, v) on 

the complex plane, the stereographic projection is given by, (u, v) = ( x
1 − z , y

1 − z). We denote 

D as the mapping result of c on input cortical surface M.

C. Area-Preserving Mapping

The area-preserving mapping, a further strategy of adjusting conformal result D, is based on 

Brenier’s Approach to solving optimal mass transport (OMT) problem.

Suppose two metric spaces (X,μ) and (Y,ν) have a same total measure, ∫X μ = ∫Y ν. A 

transport plan T : X →Y is called a measure preserving transport plan if for any subset U 
⊂Y, μ(T−1(U)) = ν(U).

We are interested in finding a measure preserving transport plan Topt such that the total 

transport cost is minimal, i.e. Topt (X,Y)=argminT ∫M c(x,T(x))dμ(x), where c(x, y) is the 

transportation cost of moving from x ∈ X to y ∈Y. Note the space Y can be discretized as Y 

= {y1, y2, ···, yn} with Dirac measure ν = ∑ j = 1
n = ν jδ(y − y j).

The following theorem, has been proven using a variational principle in [19], plays a 

fundamental role in finding the optimal discrete transport plan.

Theorem II.1—Assume μ has a compact support Ω = {x ∈ X|μ(x) > 0}. For any given 

measure ν, with total measure preserved, i.e. ∑ j = 1
n ν j = ∫ Ωμ, νi > 0, define a vector h = 

(h1,h2,…,hn) ∈ ℝn, where hi is a real number assigned to yi ∈ Y. For each point yi, 
constructs a hyperplane < x, yi > +hi = 0 in X, all these hyperplanes form a convex 
polyhedron u(x). There must exist a height vector h unique up to adding a constant (c,…, c), 
such that the gradient map ∇u(x) optimizes the following transportation cost,

E(T): = ∫
Ω

∣ x − T(x) ∣2μ(x)dx . (1)

Meanwhile, the following measure-preservation constrains are satisfied for all cells, that is 
∫Wi μ = νi, i = 1,2,…, n.

We explain the theorem in the context of our spherical area-preserving mapping. Our goal is 

to find a : X →Y, such that once we do the inverse stereo-graphic mapping back to the unit 

sphere, the vertex area on the unit sphere, is same as vertex area on cortical surface M.
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Let the mapping target of xi ∈ X be yi ∈ Y. For each point yi, a real value hi is assigned 

(initially can be 0). With the assigned value hi, we construct a hyperplane defined on X: 
πi :< x, yi > +hi = 0, where <,> is the inner product. Fig. 2 demonstrates the hyperplane πi of 

point pi on the compact support Ω. These hyperplanes intersect each other and eventually 

form a convex polyhedron u(x), which have the condition, u(x) = maxi{< x, yi > +hi}.

Denote G(h) as the polyhedron graph of u(x). Then the vertical projection of G(h) induces a 

polygonal partition of Ω. We call ∇u, the gradient of u, a gradient map which maps each cell 

Wi to a single point yi, i.e., ∇u(x) : Wi → yi, i = 1,2,…,n. One can see that the height vector 

h controls the hyperplanes, the shape of u, the induced cell decomposition Wi, and 

eventually the cell center.

It has been proven in [21] that the minimal solution of the following E(h) also optimizes the 

cost defined in Equ. 1,

E(h) = ∫
Ω

u(x)μ(x)dx − ∑
i = 1

n
νihi . (2)

If we find the h such that the energy is minimized, we are able to construct the area-

preserving mapping according to the discussion. The benefits of taking the Eq. 2 is that the 

gradient and Hessian matrix can be given, respectively,

∇E(h) = − νi + ∫
Wi

μ, (3)

Hi j = ∂2E(h)
∂hi∂h j

=
∫

ei j
μ W i ∩ W j ∩ Ω ≠ ∅

0 otherwise
(4)
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Algorithm 1

Optimal Mass Transportation Map

As the energy E is convex when the domain of Y is convex, the global minimum can be 

obtained efficiently by Newton’s method. This procedure is described in Alg. 1. [21] In our 

setting, the vertex area of vi, on surface S, is defined as,

Ai = 1
3 ∑

j, k
Area([vi, v j, vk]), (5)

where [vi, vj, vk] is a triangle face adjacent to vi. As our goal is the area-preserving respect 

to unit sphere, when we set the target measure on the planar domain, additional area 

distortion induced by stereo-graphic projection is taken into consideration, νi =
4Ai

(1 + u2 + v2)2
.

After solving the optimal mass transport problem on planar domain by Alg. 1, we do inverse 

stereo-graphic projection and yield the spherical area-preserving mapping of M. The inverse 

stereo-graphic projection is given by,

(x, y, z) = ( 2u
1 + u2 + v2 , 2v

1 + u2 + v2 , −1 + u2 + v2

1 + u2 + v2 ) . (6)
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D. Shape Descriptor

The area-preserving mapping carries precious information about the surface local area 

deformation. To quantify such deformation, we adopt the Beltrami coefficient [22] as our 

shape descriptor. Beltrami coefficient of surface, when given metric tensor g(x, y) = E F
F G

, 

can be defined as,

μ(x, y) = E − G + 2iF
E + G + 2 EG − F2 . (7)

Beltrami coefficient μ relates both magnitude and angle of the dilation of surface. Fig. 3 

shows the relation between Beltrami coefficient μ and shape dilation. Mathematically, if an 

infinity small circle is transformed to an ellipse, the distortion of the translation is 

K = 1 + ∣ μ ∣
1 − ∣ μ ∣  and the maximal dilation direction is the argument of μ.

In the discrete setting, Beltrami coefficient can be estimated on each triangular face, based 

on the fact elements in the metric tensor g(x, y) can be defined on each triangular face. For 

the purpose of simplicity, we further define the Beltrami coefficient μi on each vertex vi as 

the area weighted average of neighboring faces,

μi =
∑ j, k μ[vi, v j, vk]Area([vi, v j, vk])

∑ j, k Area([vi, v j, vk]) . (8)

E. Descriptor Re-sampling and Patch-Based Sparse Coding

Although the Beltrami coefficient can be extracted for each vertex or face, unfortunately, 

there are two obstacles to prevent the shape descriptor applying directly. The number of 

shape descriptor is not consistent across subjects, and the dimension of the descriptor is too 

high leading the scenario of curse of dimensionality where the generalization of classifier is 

poor.

To tackle the first obstacle, we align the unit spheres via a rotation on sphere and re-sample 

consistently on sphere. Denote the target unit sphere as St. Given a unit sphere mapping 

result Sq, we find a rotation (θ,ϕ) applied to Sq, such that the mean curvature difference is 

minimal. Although this process is not globally optimal, a good initial guess, e.g. from 

Freesurfer [13], leads the result quite stable. Later we re-sample the aligned unit sphere with 

a template triangular mesh on sphere. while the template can be arbitrary, for the favor of 

well sampling and simplicity, some restriction should be applied. Here, we take the attractive 

spherical geodesic grids scheme, where each triangle on sphere is of same area and each 

vertex share a consistent adjacent information, to generate a template. Geodesic grids 

schemes have been successfully applied to many of the problems associated with fluid-flow 
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simulations in a spherical geometry [23]. Now, we got the template and we can re-sample 

the feature values of each template point.

To walk around the second obstacle, the patch-based sparse coding [24] is taken to reduce 

dimensions. Patch-based sparse coding has been successfully applied to cortical surface 

classification [25], [26].

Here, we first collect vertexes around a vertex such that these vertexes can be reached within 

visiting k connected edges. We call all vertexes, with certain order, as k– ring patch of the 

center vertex. Fig. 4(f) shows a 4– ring patch of the center (green) vertex, in a count-clock-

wise order. Since we adopt spherical geodesic grids as template, the k–ring patch can share a 

common graph structure. Denote Pi as the patch formed by center vertex vi, then each patch 

feature Pi can be expressed by a vector pi. We randomly take sufficient center vertexes and 

form a patch for vertex, denoted as X = (p1, p2, ···, pn) ∈ ℝ|p|×n, where each patch pi ∈ ℝ|p| is 

a vector with |p| elements, and the total number of patches is n

For each patch pi, the sparse feature extraction can be incorporated with following problem,

min f i(D, zi) = 1
2‖Dzi − pi‖2

2 + λ‖zi‖1, (9)

where λ is the regularization parameter.

In this way, the patch vector pi is represented by an m–dimensional vector zi, with m ≪ |p|. 
Later, the max-pooling is adopted for all the patches, F( j) = max{[p1( j),p2( j), ···, pn(j)]}, j 
= 1,2, ···, |p| to reduce the dimensions. We take F ∈ ℝ|p| as the subject’s feature for 

classification.

III. Process Pipeline

We summarize the whole the pipeline in Fig. 4. First, the MRI images are acquired from the 

Alzheimers Disease Neuroimaging Initiative (ADNI) project [27]. Fig. 4(a) shows several 

image slices of same subject.

With the given MRI images, we adopt FreeSurfer [13] to obtain the cortex pial surfaces, as 

shown in Fig. 4(b). Then we follow the method introduced in Alg. 1, to obtain the unique 

spherical area-preserving mapping, as shown in Fig. 4(c) . Later, we extract Beltrami 

coefficient for each vertex. After a rough registration, we re-sample the Beltrami coefficient 

on unit sphere. Fig. 4(e) shows the resampling points on sphere. Finally, surface patches are 

generated and the feature vector for classification is formed.

IV. Data Collection

Currently, most of brain imaging researchers use the clinical symptom-based diagnosis 

without the confirmation of beta-amyloid plaques (Aβ) in human brains. In this work, we 

study whole-brain morphometry on a cohort consisting of Aβ positive AD (N =151) and 
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matched Aβ negative cognitively unimpaired subjects N = 271 with Aβ positivity 

determined via florbetapir PET. The demographic information of subjects is given in the 

Table I.

V. EXPERIMENTAL RESULTS

A. Group Difference

Our area-preserving mapping preserves the global connectivity and local area of each vertex, 

so it reflects the local structure of cortical surface with great fidelity.

For each re-sampled point, we simply add its vertex’s coordinate across all subjects. This 

yields the average shape as shown in Fig. 5. We see the major gyri/sulci structures are well 

preserved in the average brain surface. It demonstrates that our mapping is quite easy for 

future registration work, given the fact that a simple alignment keeps major structure in the 

average surface.

With the average brain surface, we can further visualize the difference of shape descriptors 

between two study groups. We take the average shape descriptor on each group (simply add 

the feature descriptor on each re-sampled vertex among the subjects in the same group). Fig. 

5 color shows the feature value difference. We notice stronger shape difference in the medial 

temporal lobe (MTL) area. It agrees with prior AD studies [12] which have shown that the 

MTL is one of the most vulnerable regions and earliest affected due to AD progression.

B. Classification

We further test shape descriptor performance on classifying cortical surfaces from different 

clinical groups. We use 80% of the left hemisphere of the pial surfaces to train a SVM 

classifier and use the remaining 20% to validate. This process is repeated by 500 times, and 

the results of average classification rate and sensitive rate are shown in Table II. The 

proposed method is compared with popular brain measures, the spherical harmonic mapping 

[20], weighted spherical harmonic mapping [28], and the thickness as a feature patch-based 

sparse coding [24].

While we refer the readers to the paper [28] for details of weighted spherical harmonic 

mapping, we briefly introduce the idea to introduce necessary notations. A function, defined 

on sphere, can be represented as, p(θ, ϕ) = ∑l = 0
l = L∑m = − l

l clme−l(l + 1)wY lm(θ, ϕ). Ylm is the 

spherical harmonic basis, w is the weight value, and clm are the coefficients. When w = 0, 

equation is degenerated to conventional spherical harmonic decomposition [20]. In the 

experiment of Weighted Spherical Harmonic classification, we apply the decomposition for 

each coordinate channel one by one, namely X, Y and Z, with L = 100, and optimized w 
[28]. Then collect coefficients {clm} of each channel and combine all the coefficients as a 

vector. The same issue is that the dimension of coefficients is too high, thus we apply sparse 

coding scheme as discussed in Eq. 9 (regard the coefficients as a single patch) to prune the 

representative features. The performance SVM classifier with Weighted Spherical Harmonic 

as the feature is illustrated in the second row of Tab. II. The same process is repeated for w = 

0, that is the classifier with Spherical Harmonic coefficient as the feature (first-row method 
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in Tab. II). Another method we compared is the thickness based surface sparse coding (third-

row method in Tab. II). It shares a similar approach to our method, the differences are, the 

alignments comes from the result of Freesurfer, and the feature is cortical thickness instead 

of Beltrami coefficient.

Our method can out-perform the (weighted) Spherical Harmonic method. Compare to 

spherical harmonic coefficient sparse coding, our scheme takes a patch-based sparse coding 

scheme, it greatly empowered the method. On the other hand, we compare our method with 

the thickness based patch sparse coding approach. Our method still outweighs, indicating 

that the improvement is not only contributed by patch-based sparse coding, but also the good 

selection of shape descriptor.

VI. Conclusion and Future Work

In this paper, we incorporated several state of the art methods to map the cortical surface 

onto a unit sphere, extract shape descriptor on the unit sphere, re-sample the shape 

descriptor, generate patches on sphere, and classify the normal controls and AD patients 

with SVM. The results show that the proposed shape descriptor is sensitive for surface 

deformation and thus can detect AD’s influence on the brain surface. We also discussed the 

shape descriptor for the two groups. The results explain the reason why our shape descriptor 

can detect the shape abnormality affected by AD.

There are some opportunities to refine our current work. For instance, during the surface 

reregistration, we could slightly adjust each vertex position to minimize the curvature 

difference.
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Fig. 1. 
Global optimal area-preserving mapping.
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Fig. 2. 
Discrete transport plan of ∇u.
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Fig. 3. 
Beltrami coefficient measures the map dilation.
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Fig. 4. 
Process Pipeline: (a) is the MRI images; (b) is the extracted cortical surface; (c) is the area-

preserving mapping result; (d) shape descriptor on sphere; (e) consistent shape descriptor on 

sphere; (f) patch of green vertex
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Fig. 5. 
Shape descriptor difference overlaid on the average brain surface.
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TABLE I

Demographic information of subjects in this study

Group Size Gender M/F Age MMSE

AD (Aβ+) 151 79/72 74.5± 7.9 22.6± 3.1

NL CTL (Aβ−) 271 132/139 76.3± 6.7 29.0± 1.3
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TABLE II

Average recognition rate of different signatures

Method Accurate(%) Sensitivity(%)

Spherical Harmonic 77.5 65

Weighted Spherical Harmonic 80.0 77.78

Thickness Sparse Coding 77.9 66.67

Proposed Shape Descriptor 81.8 80.8
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