
  

 

Abstract— Extremely preterm infants often require 

endotracheal intubation and mechanical ventilation during the 

first days of life. Due to the detrimental effects of prolonged 

invasive mechanical ventilation (IMV), clinicians aim to 

extubate infants as soon as they deem them ready. 

Unfortunately, existing strategies for prediction of extubation 

readiness vary across clinicians and institutions, and lead to 

high reintubation rates. We present an approach using 

Random Forest classifiers for the analysis of cardiorespiratory 

variability to predict extubation readiness. We address the 

issue of data imbalance by employing random undersampling 

of examples from the majority class before training each 

Decision Tree in a bag. By incorporating clinical domain 

knowledge, we further demonstrate that our classifier could 

have identified 71% of infants who failed extubation, while 

maintaining a success detection rate of 78%.  

I. INTRODUCTION 

Respiratory management of extremely preterm infants 
(birth weight ≤ 1250g) is challenging. These infants are born 
with underdeveloped lungs and immature control of 
breathing. As a result, they often require endotracheal 
intubation and invasive mechanical ventilation (IMV) during 
the first few days of life [1].  

IMV is a life-saving therapy, but when used for a long 
period, protracted IMV is associated with increased 
morbidities and mortalities [2]. As such, timely and effective 
weaning and extubation is critical since reintubation is 
technically difficult and has been associated with adverse 
effects such as lung trauma, infection, lung collapse, and 
death [3, 4]. 

To assess extubation readiness, clinicians routinely use 
blood gas results, ventilator settings, and clinical expertise. 
However, there is no consensus on an objective weaning 
protocol, and practice varies individually and amongst 
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institutions [5]. Indeed, studies have reported wide ranges of 
reintubation rates depending on several factors including the 
time frame used to define extubation failure [4, 6]. In this 
paper, extubation failure is defined as the need for 
reintubation within 72hrs of extubation. 

Objective predictors of extubation readiness have been 
investigated using clinical variables, breath measurements of 
respiratory components, minute ventilation tests, and 
spontaneous breathing trials [7-10]. Most of these evaluations 
are time-consuming and require manual analysis of 
respiratory signals, limiting the analysis to small subsets of 
infants within a single institution. Therefore, the Automated 
Prediction of Extubation Readiness (APEX) study was 
designed as a multi-center, interdisciplinary study to predict 
extubation readiness in these infants using objective, 
automated measures of cardiorespiratory behavior. Our 
previous work on APEX involved a pilot study of 53 patients 
recruited at one institution [11]. 

This paper explored the predictive capability of 
quantitative measures of cardiorespiratory behavior to 
determine extubation readiness in a multi-institutional 
population.  In our previous work, heart rate and respiratory 
variability provided valuable insight into the extubation 
outcome [8]. Within this larger multicenter infant population, 
we used scalar cardiorespiratory variability measurements 
and accommodated two key classification challenges. First, 
our dataset contained a relatively small number of examples 
compared to the number of features being evaluated. Second, 
the dataset suffered from severe class imbalance: the ratio of 
success to failure cases was 85:15. Therefore, it was crucial 
to use careful feature selection to avoid overfitting and adopt 
appropriate methodology to account for class imbalance 
during training.  

We developed classifiers based on “bags” of decision 
trees, called Random Forests. Random forests address the 
first challenge of feature selection in an embedded fashion: 
the process of building individual trees identifies features that 
split the examples well. To address class imbalance, we 
applied random undersampling of the majority class before 
training of each decision tree in the bag of classifiers. This 
classifier structure was first presented in the literature as 
Balanced Random Forests (BRF) [12]. We demonstrate 
empirically that the use of BRF leads to a classifier with a 
more balanced tradeoff between sensitivity and specificity. 
We further show that by combining clinical knowledge with 
a BRF, we can boost the performance and reliability of the 
classifier as measured by the area under the receiver 
operating characteristic (ROC) curve. 
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The objective of this study was to use automated, 
objective features of cardiorespiratory variability to predict 
extubation readiness using nonlinear machine learning tools 
in a database of 189 extremely preterm infants. The rest of 
the paper is organized as follows: Section II describes the 
APEX study and the signals acquired; Section III details the 
methods used for feature development; Section IV describes 
the machine learning methods used to develop a predictor; 
Section V reports the results of the work; and Section VI 
provides a discussion and concluding remarks. 

II. APEX STUDY DESIGN 

A. Infant Population 

The APEX study is an ongoing multicenter, prospective, 

observational study. Over a period of 4 years, data have been 

acquired from five NICUs: the Royal Victoria Hospital; the 

Montreal Children’s Hospital; the Jewish General Hospital 

(Montreal, Quebec, Canada); the Detroit Medical Center 

(Detroit, MI, USA); and the Women and Infant’s Hospital 

(Providence, RI, USA). Ethics approval was obtained from 

the Institutional Review Board of each institution. 

Infants with Birth Weight (BW) ≤ 1250g, receiving 

Invasive Mechanical Ventilation (IMV) at the time of 

enrolment and undergoing their first extubation attempt were 

eligible. Infants were excluded if they had any major 

congenital anomalies, or were receiving any vasopressor or 

sedative drugs at the time of extubation. Written informed 

parental consent was obtained prior to enrolment. The 

attending clinician was responsible for determining 

extubation readiness, and data were collected immediately 

prior to extubation.  

B. Data Acquisition 

Five cardiorespiratory signals were acquired from each 

infant: uncalibrated Respiratory Inductance 

Plethysmography (RIP) signals from bands placed around 

the infant’s ribcage (RCG) at the level of the nipple line and 

abdomen (ABD) at 0.5cm above the umbilicus (Viasys ® 

Healthcare, USA); electrocardiography (ECG) using three 

electrodes (Vermed, USA, © 2010); photoplethysmography 

(PPG) and oxygen saturation (SAT) signals from a pulse 

oximeter (Masimo Radical ®).  

These signals were sampled continuously during 50-60 

minutes of IMV followed by 5 minutes of Endotracheal 

Tube Continuous Positive Airway Pressure (ETT-CPAP). 

Following this, the patient was extubated. Signals were anti-

alias filtered at 500Hz and sampled at 1000Hz using the 

PowerLab 16/30 analog-digital data acquisition system 

(ADInstruments, Bella Vista, Australia, © 2009) with a 16-

bit analog-to-digital resolution. 

Also, clinical variables were collected from birth until 

hospital discharge and include demographic information, 

ventilator information, post-extubation support, and final 

outcomes. 

III. METHODS 

This exploratory study used several methods to compute 

cardiorespiratory variability in order to determine the 

discriminatory features.  

A. Cardiorespiratory Metrics 

To obtain moving measurements of cardiorespiratory 
behavior, the signals were processed at every time instant 
into sample-by-sample metrics of power, respiratory 
frequency, cardiac frequency, and thoraco-abdominal 
synchrony, as described in [11, 13]. The metrics computed 
for this study include: 

1. Pause power in the RCG (𝑟𝑝𝑟𝑐) and ABD (𝑟𝑝𝑎𝑏): the 
power in the 0-2Hz band in a short sliding window 
relative to the median power in a preceding long 
window.  

2. Respiratory frequency (𝑟𝑓𝑎𝑏): the frequency (in a sliding 
window) at which the highest power occurs in the 0-2Hz 
band, using a bank of band-pass filters with 0.2Hz 
bandwidth.  

3. Cardiac frequency using the ECG (𝑐𝑓𝑒𝑐) or PPG (𝑐𝑓𝑝𝑝): 
the frequency with the most power in the 1.5-3.5Hz 
band, using the Short Time Fourier Transform (STFT). 

4. Root-mean-square (𝑟𝑚𝑠+): the sum of the RMS of the 
RCG and ABD in sliding windows. 

5. Thoraco-abdominal phase (Φ): the phase difference 
between the RCG and ABD. 

6. Movement artifact power in the RCG (𝑏𝑚𝑝𝑟𝑐) and ABD 

(𝑏𝑚𝑝𝑎𝑏): the power in the 0-0.4Hz movement artifact 
band relative to the 0.4-2Hz breathing band. 

7. Cross-Correlation coefficient between the cardiac 

frequency and respiratory frequency (𝜌0
𝑟𝑓−𝑐𝑓

), computed 

over a sliding window. 

B. Cardiorespiratory Patterns 

The RCG and ABD signals were also processed using an 
Automated Unsupervised Respiratory Event Analysis 
(AUREA) algorithm to extract the following sample-by-
sample respiratory patterns: 

 Pause (PAU): cessation of breathing indicated by low 
RCG and ABD power in the breathing band (0.4-2Hz). 

 Movement Artifact (MVT): periods during which there is 
power in the movement artifact band (0-0.4Hz) due to 
infant movement or nurse handling. 

 Synchronous Breathing (SYB): periods during which 
RCG and ABD are in synchrony. 

 Asynchronous Breathing (ASB): periods during which 
RCG and ABD are out of synchrony. 

AUREA is objective, repeatable, and has been tuned for 
this population. Further details are given in [13]. The 
following patterns were also extracted from the ECG and 
PPG signals: 

 Bradycardia (BDY): artifact-free periods during which 
and the heart rate was below 100 beats/min. 



  

TABLE 1: CARDIORESPIRATORY VARIABILITY FEATURES 

PROVIDED TO ALL CLASSIFIERS 
 Features 

Metrics 

𝑟𝑝𝑟𝑐, 𝑟𝑝𝑎𝑏, 

𝑟𝑓𝑎𝑏 , 𝑐𝑓𝑒𝑐, 
𝑐𝑓𝑝𝑝, 𝑟𝑚𝑠+, 

 𝜙, 𝑏𝑚𝑝𝑟𝑐, 

𝑏𝑚𝑝𝑎𝑏 , 𝜌0
𝑟𝑓−𝑐𝑓

   

Median, IQR 

Median power, IQR of power 

(40 features) 

 

SAT 

Kurtosis, Skewness 

Median power, IQR of power 

(4 features) 

ECG  

RR Intervals 

SDNN, SDSD, triangular index 

(3 features) 

Patterns 

PAU, MVT, 

ASB, SYB,  

BDY, DST 

NP
, Ttot

P
 ,Tmax

P
, DP

 , FP 

(30 features) 

Clinical 

Variables 

BW, GA 

(2 features) 

    

 Desaturation (DST): artifact-free periods during which 
the oxygen saturation was less than 85%. Moving 
artifact was detected using a PPG movement artifact 
detector [14]. 

C. Cardiorespiratory Features 

Cardiorespiratory variability was analyzed using the 
behavior provided by the metrics, the patterns, and the R- 
peak intervals of the ECG. Table 1 summarizes the features. 

For each metric, the moving average power was 
computed during the 2nd minute of the ETT-CPAP period as 
our previous work had demonstrated that this time period was 
able to significantly differentiate between success and failure 
[11]. The 1st minute was discarded as infant’s transition time 
to ETT-CPAP. The median and inter-quartile range (IQR) of 
the metrics and their power were used as scalar 
representations. Scalar properties of the SAT signal were also 
computed using median power, IQR of the power, kurtosis, 
and skewness. 

The moving power of the heart rate was computed during 
the 2nd minute of ETT-CPAP. Also, R-peaks in the ECG were 
detected using the Pan Tompkins algorithm [15]. Several 
heart rate variability features were computed: the standard 
deviation of the time interval between R-peaks (SDNN); the 
standard deviation of successive differences in the interval 
between R-peaks (SDSD); and the triangular index [16]. The 
features were computed during IMV and ETT-CPAP. 

Cardiorespiratory pattern variability provided a 

measurement of the overall performance of an infant during 

the ETT-CPAP period. Pattern variability for the 6 patterns 

was computed using the following: 

1. Number of occurrences (NP).  

2. Total duration (Ttot
P). 

3. Maximum length (Tmax
P) 

4. Pattern density (DP): defined as the fraction of the ETT-

CPAP time spent in a pattern. 

5. Pattern frequency (FP): defined as the number of pattern 

occurrences divided by the total duration of ETT-CPAP. 

IV. MACHINE LEARNING APPROACH 

A. Features 

A total of 77 cardiorespiratory variability and 2 clinical 
features were computed and used as input to the classification 
algorithms (Table 1). Three different classification strategies 
were employed to predict using this feature set. 

B. Random Forest 

For classification, we used Random Forest (RF) 

classifiers. As had been shown in previous work that linear 

classifiers are inadequate for this difficult clinical 

population, it was important to use a classifier with the 

ability to learn non-linear decision boundaries. Additionally, 

RFs have the additional benefit of embedded feature 

selection [17].    

The random forest classifier is a bagging machine 

learning method [18] which works by training several 

decision trees in parallel. Each tree is trained on a subset of 

the examples and features in the dataset. This approach 

permits each decision tree to learn something new and 

different about the dataset. Such bagging methods also help 

to reduce variance and the chances of overfitting. During 

testing, each tree in the forest makes an independent 

prediction on the new example. The predictions from all 

trees are then averaged to obtain a single prediction for that 

example.  

C. Balanced Random Forest 

The Random Forest classifier, like many machine learning 

algorithms (such as logistic regression and support vector 

machines) encounters difficulty in making good predictions 

when the number of examples in the different classes is 

imbalanced. The skew in the dataset could be worsened in 

some or all of the subsets passed to the trees, potentially 

leading to trees that are only good at predicting the majority 

class (i.e. the success class). In this work, we addressed this 

challenge through random undersampling of the majority 

group. By this, we ensured that the subsets passed to the 

decision trees have equal number of success and failure 

examples. This type of random forest has been presented in 

literature as a Balanced Random Forest (BRF) [12].  

D.   Clinical Decision & Balanced Random Forest 

Clinically, it is quite common that infants who are older 

and larger at birth tend to be extubated successfully, and that 

the difficulty in deciding when to extubate lies primarily in 

the younger and smaller infants. To analyze this empirically, 

we examined the gestational age as a function of the birth 

weight of our infant population (Fig. 1). Of the 80 babies 

who were at least 27 weeks old or weighed above 1000g, 76 

(95%) were extubation successes. We applied a rule to 

encode this choice - all infants above 27 weeks or 1000g 

were automatically classified as success. A BRF was then 

trained on only the population of young and small infants. In 

doing this, we encode the choice of the clinician to extubate 

the low-risk population of older babies and focus the efforts 



  

 

Fig. 1: Gestational Age (GA) vs Birth Weight (BW) of the patient 
population, showing a decision threshold separating the older, larger 
patients. 95% of patients above threshold were successfully extubated. 

of the classifier on the difficult, younger segment of the 

population. This classifier involves a 2-stage process – the 

clinical decision/stratification rule, followed by a BRF 

classifier (CD-BRF).  

E. Hyperparameter Search 

The random forest has several hyperparameters which 

must be tuned appropriately for a given dataset to obtain 

optimal performance from the classifier. These 

hyperparameters include settings that affect the underlying 

decision trees – such as the number of features to consider at 

each node of the tree, the maximum depth before 

terminating the tree and minimum number of examples 

required at a leaf node – as well as settings that govern the 

random forest itself – such as the number of trees to train. 

These parameters generally control the bias-variance 

tradeoff between fitting an overly complex model and an 

overly simplistic one [17]. We employed 5-fold cross 

validation to evaluate our 3 classifiers (RF, BRF and CD-

BRF) trained at several combinations of these 

hyperparameters. The best hyperparameter setting was 

chosen as that which gave the best performance on the test 

set averaged over all folds. 

F. Performance Metrics and Evaluation 

For each model (i.e. hyperparameter setting) trained, we 

tracked 3 performance metrics: sensitivity or the success 

detection rate, specificity or failure detection rate and 

balanced accuracy1, which is the average of the two. We 

selected the model that gave the best balanced accuracy. The 

receiver operating characteristic (ROC) curve and the area 

under the curve (AUC) were calculated for the selected 

model. The AUC was generated by varying a threshold on 

the average predicted probability from all trees. 

To use our relatively small dataset as efficiently as 

possible, we did not leave out a fixed test set.  Instead we 

used 5-fold cross validation to evaluate the generalization 

capability of our selected model. This enables us to use each 

 
1 The concept of balanced accuracy is different from balanced random 

forest. See appendix in [20] for a motivation on why balanced accuracy is a 

preferred metric over accuracy. 

example at least once for both training and testing. 

Performance metrics are always reported on the test set. 

V. RESULTS 

At the time of this work, the database contained 189 
patients with BW 882±201g and GA 26.5±1.9 weeks. Infants 
were extubated at 13.3±15.6 days post-birth when deemed 
‘ready’ by the attending physician. A total of 28 (14.8%) 
infants failed extubation. The dataset contained 189 patients 
– 161 succeeded extubation and 28 failed, i.e., required 
reintubation within 72hrs. The features described in Table 1 
were used in the analyses. For the 6 patients for whom 3 
feature values were missing, the values were imputed using 
the median of the values from other patients in the same 
group. 

Fig. 2 shows the performance of the 3 classifiers: random 
forest (RF), balanced random forest (BRF), and clinical 
decision with balanced random forest (CD-BRF) as ROC 
curves. First, it can be seen that the CD-BRF performs best, 
attaining the highest AUC (0.74) among all 3 classifiers. 
Second, whereas the standard random forest classifier (RF) 
learns a skewed model with a high false positive rate (as seen 
in the low 43% specificity), BRF and CD-BRF use random 
undersampling of the majority class and attain a better 
balance between true positive and false positive rates (with 
specificity of 75% and 71% respectively). It is worth noting 
that the CD-BRF classifier achieved an 83% specificity in the 
younger population denoted by Fig. 1. 

The features selected by the CD-BRF classifier were 
examined. It was found that only 17 of the 77 
cardiorespiratory variability features had non-zero weights, 
suggesting that the remaining 60 features had no correlation 
with the outcome. The top six features and their weights are 
shown in Table 2. Future work will evaluate how these 
features differ in the two groups of patients and a 
determination of what new, potentially useful features can be 
included to boost performance. 

VI. DISCUSSION 

This paper presented an approach for predicting 
extubation readiness from automated, novel cardiorespiratory 
variability features using non-linear classifiers based on 
random forests. This work extended upon the pilot work 
published previously by incorporating novel features 
sensitive to breathing patterns in a larger, multi-institutional 
population. Class imbalance was accounted for by randomly 
undersampling the majority class in a balanced random forest 
(BRF). Our best classifier combined clinical domain 
knowledge with a BRF to give a success detection rate of 
78% and failure detection rate of 71%. This suggests that 
there were signs in the cardiorespiratory behavior of these 
infants which, if considered by the physicians, could have 
prevented 71% extubation failures. 

Previous work using cardiorespiratory variability features 
achieved a failure detection rate of 83.2% and success 
detection rate of 73.6% [11]. This was carried out on a much 
smaller sample size of 53 babies. The performance observed 
in current work may be a more realistic measure given the 
increased heterogeneity in the population. In this work, the  



  

 

Fig. 2: ROC curve for standard random forest (RF), balanced random 
forest (BRF) and classifier which combines clinical decision with 
balanced random forest (CD-BRF). AUC – area under the curve. 
“Sens” and “Spec” refer to the sensitivity (success detection rate) and 
specificity (failure detection rate) at the best point on the ROC. 

TABLE 2: TOP 6 FEATURES SELECTED BY CD-BRF CLASSIFIER. 

Feature Name CD-BRF Weight 

Median of 𝒃𝒎𝒑𝒓𝒄 0.11 

NASB 0.11 

IQR of 𝒃𝒎𝒑𝒓𝒄 0.10 

Median Power of SAT 0.08 

IQR of 𝒓𝒑𝒓𝒄 0.07 

FASB 0.07 
 

best AUC of 0.75 compares with that of [19] which used only 
clinical variables, and is better than results in [20] which used 
only respiratory patterns. Overall, this highlights the 
difficulty of predicting extubation readiness in such a high-
risk population. 

There were a few limitations with this work. First, we 
reduced the time-varying signals into scalar features in order 
to leverage them in the classifiers. These scalar 
representations may have discarded useful information in the 
signals. In future work, it will be necessary to experiment 
with machine learning methods that are inherently designed 
for time-series data, such as hidden Markov models (HMM) 
and conditional random fields (CRF). Second, only the 2nd 
minute of the ETT-CPAP was considered for consistency and 
to allow direct comparison with previous work. Given that 
only 17/77 features showed importance, it is crucial to 
explore new features or longer ETT-CPAP periods. 

Also, clinical variables such as the weight and age at 
extubation may also contribute to a better stratification in the 
CD-BRF classifier. Future work will examine these 
possibilities. Finally, as the number of failure cases was quite 
small, it will be important to test the models developed here 
on a held-out validation set. Indeed, this is part of our data 
acquisition protocol and will be tested in future work. 
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