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Abstract— Step counting from smart-phones allows a wide
range of applications related to fitness and health. Estimating
steps from phones’ accelerometers is challenging because of the
multitude of ways a smart-phone can be carried. We focus our
work on the windowed peak detection algorithm, which has
previously been shown to be accurate and efficient and thus
suitable for mobile devices. We explore and optimise further
the algorithm and its parameters making use of data collected
by three volunteers holding the phone in six different positions.
In order to simplify the analysis of the data, we also built
a novel device for the detection of the ground truth steps.
Over the collected data set, the algorithm reaches 95% average
accuracy. We implemented the algorithm for the Android OS
and released it as an open source project. A separate dataset
was collected with the algorithm running on the smart-phone
for further validation. The validation confirms the accuracy of
the algorithm in real-time conditions.

I. INTRODUCTION

In the last 10 years, no other electronic device has had the
same commercial and societal impact as the smart-phone.
Mobile phone penetration is greater than that of personal
computers and, in the United Kingdom, it has already
reached peaks of 85% for people aged 17-75 [1]. Modern
smart-phones embed a vast number of sensors connected
to powerful processing units and capacious memories. Even
low-end devices have built-in accelerometers, proximity sen-
sors, gyroscopes, magnetometers and Global Positioning
System receivers.

This technology allows for several applications, from nav-
igation and positioning [2] to tracking for health and fitness
purposes [3]. Particularly relevant for health and fitness, is
the ability to measure physical activity. Step counting is the
most commonly used parameter extracted in apps designed
to measure and influence physical activity [4].

Recently, high-end smart-phones have often incorporated
low-power step counters, which are part of the motion-
sensing chip-set, but older or cheaper devices still lack
this functionality. To compensate for the lack of hardware
resources, mobile applications like Google Fit or Samsung
Health compute the step count using the main processing
unit, but the accuracy and the details of their algorithms are
unknown. The lack of a proper evaluation of these products
makes it difficult to employ them for medical purposes,
where transparency about the accuracy and the limitations of
the technology are needed. While the accuracy of wearable
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devices is being investigated widely [5], little is still known
about mobile applications.

The research community, and developers in general, would
therefore benefit from a validated, open-source implemen-
tation of a step-counting algorithm for smart-phones. Even
though there are a number of open-source projects related
to step-counting, to the best of our knowledge, none have
been validated with robust methods. The aim of this paper
is to describe how an algorithm for smart-phone based step
counting has been designed, optimised and validated. The
algorithm we propose makes use of the data generated by the
accelerometer sensor, is robust to noise, is accurate enough
to be meaningful for common fitness and health applications
and is computationally efficient to be executable in real-time
by a smart-phone. The algorithm has been implemented in
Python and Java and is available as an open-source project
at: https://oxford-step-counter.github.io/.

II. RELATED WORK

There have been a number of attempts to develop step
counting algorithms based on an accelerometers signal. In [6]
a relationship between walking speed and the accelerometer
signals is used to devise an algorithm based on thresholding
the magnitude. The algorithm was tested on five walking
samples ranging from 16 to 44 steps and achieved an average
accuracy of 96.6%. The data collection protocol was not
detailed except for the fact that the device was fixed near
the centre of mass of the subject.

In [7], the authors tested a multitude of algorithms for
both walk detection and step counting. The paper describes
a wide range of techniques, from simple thresholding in
the time domain, to frequency domain analysis to non-
linear template matching and machine learning. To com-
pare them, authors decided to benchmark nine algorithms:
windowed peak detection, mean crossing counts, normalized
autocorrelation, dynamic time warping, short term Fourier
transform, continuous wavelet transform, discrete wavelet
transform, hidden Markov model, and k-means clustering.
They collected 130 data recordings from 27 subjects holding
a smart-phone in 4 ways: in-hand, in a front pocket, in a
back pocket, and in a handbag. A video recording was taken
of each session for reference. Authors determined that the
windowed peak detection, the hidden Markov model and
the continuous wavelet transform methods worked the best
across the scenarios, with a median error of about 1.3%.
Given the computational complexity of the two latter tech-
niques, authors concluded that the windowed peak detection
is the most efficient algorithm.



Fig. 1. Block diagram of the step counting algorithm. Between each pair
of stages there is a buffer to allow parallelism.

In [8], Gu et al. present an algorithm based on the
peak detection method that is also robust to false positives.
Their approach consists in adding constraints to the peak
detection in terms of periodicity (time difference between
two neighbouring peaks), similarity (peak distance between
two windows of acceleration), and continuity (number of
neighbouring windows of acceleration readings with the vari-
ance surpassing a threshold). These features allow filtering
out "false walking", e.g. when users remain still and use
their phone for writing text messages, calling, watching
videos, playing games, etc. Eight volunteers were recruited
and asked to walk 300 steps with a smart-phone in different
motion states: (a) walking with the phone in a fixed phone
pose, (b) walking with the phone in arbitrary phone poses and
(c) walking for some segments with false walking states. The
average error produced by their algorithm ranged from 3.54%
in the walking state to 14.04% in the false walking state.
They compared these performances with common fitness
applications, which performed worse especially when in the
presence of false walking.

Unfortunately, none of these studies have made the source
code of the algorithms available, nor the data sets used for
their validation.

III. METHODS

A. Step counting algorithm

To estimate the number of steps from the smart-phone
accelerometer signals, we used the windowed peak detection
technique because of its efficiency, as suggested by [7].
Particularly, our algorithm is based on the approach proposed
by [9] and can be split into 5 stages, each responsible for a
particular function (see figure 1).

To allow fast processing of the data, each block can be
instantiated in a parallel thread, while buffers are used to
hold the data temporarily between each block. For each stage
we present a set of options and parameters that need to be
optimised.

1) Pre-processing stage: Common smart-phones provide
accelerometry signals over three orthogonal axes; however
the step-counting algorithm is concerned with the magnitude
rather than any single directional component because the
physical orientation of the device is unknown. Although
common smart-phone operating systems allow a desired
sampling rate for the accelerometer to be set, there is no
guarantee that the sampling rate will be kept with precision.

Fig. 2. Signal at each processing stage. The ground truth shows the moment
when a step was detected by the ground truth device. This signal may be
slightly delayed due to latency introduced by the wireless connection.

Therefore this stage is responsible for computing the mag-
nitude of the triaxial accelerometry signal and ensuring a
constant sampling frequency by means of linear interpola-
tion.

Within this work we have assumed the sampling frequency
to be 100 Hz, but the algorithm does not depend on this
value.

2) Filtering stage: Accelerometers are subject to noise
from a variety of sources (mechanical, electrical, thermal,
etc.), therefore some noise-reduction technique is needed
especially at frequencies that are not related to human
walking or running. In order to reduce the noise level, we
have implemented a finite impulse response (FIR) low-pass
filter with a cut-off frequency of 3 Hz, which allows a variety
of walking speeds. This value should include even the pace
of the speediest walkers, which was identified as 5.4 mph
(8.7 km/h) by the American College of Sports Medicine [10],
with a ratio of 2000 steps per mile (1250 steps per km). An
example of the raw accelerometer signal after interpolation
and filtering is shown in figure 2.

We consider different types of window functions for
evaluation: moving average, Gaussian window, Hann window
and the Kaiser-Bessel window.

3) Scoring stage: The function of the scoring stage is
to evaluate the peakiness of a given sample. The result
of this stage should increase the magnitude of any peaks,
making them more evident for the subsequent peak detection.
Different methods were considered:

• Maximum Difference: This considers the N previous
samples and determines the maximum difference be-
tween these and the sample in question, then computes
the same for the N samples to the right and averages



the two maximum differences as the result. If pi is the
peakiness of sample xi then for 1 ≤ k ≤ N :

pi =
max

k
(xi − xi−k) + max

k
(xi − xi+k)

2
(1)

• Mean Difference: This method is similar to the Maxi-
mum Difference method, except that instead of taking
the maximum of the difference, it uses the mean of
the differences. This preserves the overall shape of the
waveform.

pi =

∑N
k=−N,k 6=i(xi − xi+k)

2N
, (2)

• Modified Pan-Tompkins Scoring: This is an adaptation
of a well-known algorithm used for peak detection in
electrocardiogram waveforms [11]. Given a window of
N samples, the algorithm zero-means the data within
the window, sets all the negative data points to zero
and squares the samples.

An example of the output from the scoring stage is shown
in figure 2.

4) Detection stage: This stage identifies potential can-
didate peaks to be associated with a step by statistically
detecting outliers. As the algorithm processes the signal,
it keeps track of a running mean and standard deviation.
These two quantities are used to determine whether any given
sample is an outlier. If the difference between the sample and
the mean is above c times the standard deviation, then it is
marked as a potential step. The parameter c is considered for
optimisation.

5) Post-processing stage: This stage slides a window of
a fixed size, twindow, across the potential peaks and only
keeps the maximum sample within the window. As the small
dots in figure 2 show, all of the potential peak points are
clustered around the rise to the main peak. This stage selects
the local maximum among them. By tuning the window size,
one can limit the number of steps within the window, thus not
allowing peaks less than twindow apart. This approach can be
tuned to accommodate the periodicity of human walk. We set
the window length to 200 ms, corresponding to a maximum
walking speed of 5 steps/s, which is faster than the speediest
walking pace (3 steps per second). The effect of this stage
can be seen with the circles in figure 2.

B. Ground truth data collection

The proposed algorithm was fine-tuned and validated
against a self-collected dataset composed of raw accelerom-
etry data and a ground truth signal. Previous works have
used two approaches to ground truth collection: manual
step counting [8] or video annotation [7]. Although simple
to implement, these methodologies either do not provide
step-by-step information, which may help understand the
behaviour of the algorithm, or are time intensive and prone
to error.

We used a custom-built electronic device able to derive
step-by-step information. The device is placed in the shoes
of the participants, allowing the detection of each single

Fig. 3. First version of the
ground truth device. Push buttons
are placed under the tip of the
shoes and connected to the board
through wires.

Fig. 4. Second version of
the ground truth device. Pressure-
sensitive foils are placed in the
shoe under the heel. A conductive
thread is used to connect the foil to
the board.

step. Once the walking signal is captured and converted to
a binary format (i.e. foot down / foot up), the device sends
the result to a smart-phone application through a Bluetooth
Low Energy (BLE) link. The same application can be used
to record the raw accelerometry data from the phone. The
parallel recording of the two signals on one device allows to
have them synchronised effortlessly.

The ground truth device was built using the RFduino BLE-
enabled Arduino-compatible prototyping board. The device
underwent two iterations: in the first, two common push
buttons were placed under the tip of the shoe. While effective
in detecting steps, this solution did not prove robust as
the buttons broke after a few recording sessions. For the
second iteration we placed a pressure-sensitive foil, Velostat,
between the foot and the insole. Velostat is a polymeric foil
impregnated with carbon black that makes it electrically con-
ductive, and is used primarily for packaging. The properties
of the material are such that if subject to an electric current, it
changes the value of its resistance when pressed or stretched.
Two 5x5 cm Velostat foils were wired to the analogue-
to-digital converters of the board where special-purpose
firmware was developed to distinguish between ’weight-
on’ and ’weight-off’ states. The firmware uses an adaptive
threshold to determine the transition between the two states.
The threshold adapts as the medium point between the
minimum and the maximum value. Every five seconds, the
minimum is increased and the maximum decreased of 10%
of the difference. This approach guarantees that the threshold
adapts to changes in the signal (e.g. if the foil moves inside
the shoe).

The device samples the resistance of the two foils at 50
Hz and transmits it over BLE to the phone. The mobile
app logs both the accelerometer signals and the ground-truth
signal and provides a simple user interface for controlling
the recording session (a start/stop button and a timer). The
software also allows these files to be sent remotely to an
HTTP endpoint after having compressed them.

Figures 3 and 4 show the 2 versions of the device and
figure 5 shows one of the signals generated by stepping on
Velostat foils.

The device was validated by comparing its output with
manually counted steps. Steps were counted by two observers
and disagreements resulted in the test being discarded. Exper-



Fig. 5. Digitised value of the voltage measured on one Velostat foil (blue)
and the computed threshold (red).

iments were performed over short distances with the number
of steps varying between 22 and 79 (average 36 ±14 standard
deviation) and time varying between 14 and 41 seconds
(average 24±8 s).

Of 17 experiments, 12 showed no difference in the number
of steps counted by the device and the researchers, 4 had a
1-step difference and 1 had a 2-step difference. This yields
to an average accuracy of 99% and standard deviation of 2%.
We considered this accuracy to be sufficient for the purpose
of this work.

C. Data collection

In order to optimise the parameters of the algorithm with
different scenarios, we collected data from three researchers
walking for two to three minutes with the phone held in
six different positions: in a hand, in a front pocket, in a
back pocket, in an armband, in a shoulder purse, and in
a neck pouch on a lanyard. These scenarios are similar
to the ones proposed by [7]. This resulted in a dataset
containing 36 distinct recordings, each with approximately
2.5 minutes of accelerometer and ground-truth data. Six extra
experiments were dedicated to assess the differences between
three different phones (Google Pixel, Samsung Galaxy S6,
LG Nexus 5) in similar conditions: phone held in hand, same
floor and same user.

To validate the algorithm when running on the phone, 12
extra recordings were collected by two researchers holding
the phone in the same six positions as the ones used for
optimising the algorithm.

D. Algorithm optimisation

To select the optimal set of parameters for our algorithm
an exhaustive grid search across the parameter space was
performed. The explored range of the parameters is shown
in table I together with parameters that were kept constant.
The sampling frequency was fixed at 100 Hz for all the tests.

Both the algorithm and the benchmarking software were
developed in Python version 3. The optimisation of the
parameters was performed on the 36 recordings of the
scenarios dataset. In order to expedite the exhaustive search,

TABLE I
SET OF PARAMETERS OPTIMISED FOR EACH STAGE AND MINIMUM,

MAXIMUM AND STEP VALUE.

Stage Parameters Min Step Max
Filtering Window size 13 8 53
Scoring Window size 3 8 51

Detection Threshold 1.2 0.2 1.4

TABLE II
PHYSICAL CHARACTERISTICS OF THE VOLUNTEERS WHO COLLECTED

THE DATA AND AVERAGE ± STANDARD DEVIATION OF THE DURATION

AND NUMBER OF STEPS OF THE COLLECTED TRACKS.

Age Weight(kg) Height(cm) Duration(s) Steps
38 86 180 163±20 537±50
33 80 186 171±27 481±58
21 68 172 153±18 547±79

a distributed cloud-computing platform (Google Cloud Com-
pute) was employed to spread the processing load across
multiple machines. Each permutation of parameters was
ranked according to the mean error obtained on all the
recordings.

IV. RESULTS

The details of the three researchers (all male) who col-
lected the data are summarised in table II together with
average and standard deviation of the duration and number
of steps.

Table III shows the optimal set of parameters obtained
by the distributed optimisation phase. With these set of
parameters, the average accuracy is 95% ± 4.5% standard
deviation.

If we split the analysis according to the position of the
smart-phone during the recordings we obtain the results in
table IV (each scenario has six recordings). It is possible to
observe that the in-hand and purse positions give rise the
lowest accuracies. These may be caused by the harmonics

TABLE III
SET OF PARAMETERS THAT OBTAINS THE MINIMUM AVERAGE ERROR.

Stage Parameters Value

Filtering

Window size M=13
Filter type Gaussian
Filter SD 0.35
Cutoff frequency 3Hz
Gain at cutoff -60dB

Scoring Type Mean Difference
Window size N = 35

Detection Threshold 1.2

Post-Processing twindow 200 ms



TABLE IV
ACCURACY OF THE OPTIMISED ALGORITHM PER POSITION, N=6 FOR

EACH POSITION

Position Average accuracy ± SD
In hand 93% ± 3.8%

Front pocket 95% ± 2.8%
Back pocket 98% ± 1.2%

Purse 90% ± 7.2%
Armband 95% ± 2.5%

Neck pouch 98% ± 1.0%

TABLE V
ACCURACY OF THE OPTIMISED ALGORITHM PER PHONE MODEL

Phone model Accuracy Accuracy
recording 1 recording 2

Google Pixel 97.9% 95.30%
Google Nexus 5 96.1% 97.3%

Samsung S6 99.6% 95.5%

introduced in the walking frequency range by the arm
swinging when holding the phone, or by the purse swinging
back and forth under the arm.

If we analyse the six recordings that use different smart-
phones (results in table V) we can conclude that the choice
of the phone does not affect the accuracy of our algorithm
significantly, which confirms the findings of [7].

The average accuracy obtained with the 12 validation
tracks collected with the algorithm running on the phone
is 93±13%. This confirms that the algorithm performs with
a similar accuracy also when running on a smart-phone. The
high variance is due to one track taken in the back pocket
when the algorithm counted almost twice the number of
steps. The reason may be due to the fact that the pocket was
loose and allowed the phone to rebound and thus introduced
components in the signal at twice the frequency of the gait.

V. CONCLUSIONS AND FUTURE WORK

Our paper builds on the results of [7]. We agreed to their
recommendation of using the Windowed Peak Detection and
we explored further different design choices and parameters.
We confirm that the accuracy of the algorithm is above 90%
for the dataset on which it is optimised and, in addition, that
the performance is similar when the algorithm runs on the
phone with data it was not optimised on. We also show a
different approach for the collection of ground truth data that
is more scalable and we provide all our datasets and code as
open source to the community.

There are limitations to this study that could benefit from
further investigation. All our recordings were gathered during
walking on a hard floor and it will be necessary to investigate
softer surfaces like carpet or grass. To optimise parameters,
further scenarios will be added to the analysis such as
running and climbing stairs. Also, longer datasets would be
needed from more subjects to confirm the findings.

We have not evaluated scenarios of false walking activities
as was done in [8]. For these scenarios, Gu et al. offer some
valid additions to the Windowed Peak Detection that would
need to be added to our implementation.

REFERENCES

[1] P. Lee, “Mobile Consumer Survey 2017: The UK cut,”
Deloitte [Last accessed: 27 September 2017], Tech. Rep.,
2017. [Online]. Available: http://www.deloitte.co.uk/mobileuk/?_ga=
2.95282970.782041114.1506509099-13344498.1506509099

[2] H.-E. Chen, Y.-Y. Lin, C.-H. Chen, and I.-F. Wang, “Blindnavi:
A navigation app for the visually impaired smartphone user,” in
Proceedings of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems, ser. CHI EA ’15. New
York, NY, USA: ACM, 2015, pp. 19–24.

[3] J. P. Higgins, “Smartphone Applications for Patients’ Health and
Fitness,” The American Journal of Medicine, vol. 129, no. 1, pp. 11–
19, Jan. 2016.

[4] J. Bort-Roig, N. D. Gilson, A. Puig-Ribera, R. S. Contreras, and S. G.
Trost, “Measuring and Influencing Physical Activity with Smartphone
Technology: A Systematic Review,” Sports Medicine, vol. 44, no. 5,
pp. 671–686, May 2014.

[5] P. Alinia, C. Cain, R. Fallahzadeh, A. Shahrokni, D. Cook, and
H. Ghasemzadeh, “How accurate is your activity tracker? a compar-
ative study of step counts in low-intensity physical activities,” JMIR
mHealth and uHealth, vol. 5, no. 8, p. e106, 2017.

[6] N. Z. Naqvi, A. Kumar, A. Chauhan, and K. Sahni, “Step count-
ing using smartphone-based accelerometer,” International Journal on
Computer Science and Engineering, vol. 4, no. 5, pp. 675–681, May
2012.

[7] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing. ACM, 2013,
pp. 225–234.

[8] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z. Wei, “Robust and
accurate smartphone-based step counting for indoor localization,”
IEEE Sensors Journal, vol. 17, no. 11, pp. 3453–3460, 2017.

[9] G. Palshikar, “Simple algorithms for peak detection in time-series,”
Tata Research Development and Design Centre, Tech. Rep., 2009.

[10] W. W. Hoeger, L. Bond, L. Ransdell, J. M. Shimon, and S. Merugu,
“One-mile step count at walking and running speeds,” ACSM’s Health
& Fitness Journal, vol. 12, no. 1, pp. 14–19, 2008.

[11] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,”
IEEE transactions on biomedical engineering, no. 3, pp. 230–236,
1985.

http://www.deloitte.co.uk/mobileuk/?_ga=2.95282970.782041114.1506509099-13344498.1506509099
http://www.deloitte.co.uk/mobileuk/?_ga=2.95282970.782041114.1506509099-13344498.1506509099

	INTRODUCTION
	RELATED WORK
	METHODS
	Step counting algorithm
	Pre-processing stage
	Filtering stage
	Scoring stage
	Detection stage
	Post-processing stage

	Ground truth data collection
	Data collection
	Algorithm optimisation

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	References

